
ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling

Jack Tigar Humphries1, Neel Natu1, Ashwin Chaugule1, Ofir Weisse1, Barret Rhoden1, Josh Don1,
Luigi Rizzo1, Oleg Rombakh1, Paul Turner1, Christos Kozyrakis2

1 Google, Inc. 2 Stanford University

Abstract
We present ghOSt, our infrastructure for delegating kernel
scheduling decisions to userspace code. ghOSt is designed
to support the rapidly evolving needs of our data center
workloads and platforms.

Improving scheduling decisions can drastically improve
the throughput, tail latency, scalability, and security of im-
portant workloads. However, kernel schedulers are difficult
to implement, test, and deploy efficiently across a large fleet.
Recent research suggests bespoke scheduling policies, within
custom data plane operating systems, can provide compelling
performance results in a data center setting. However, these
gains have proved difficult to realize as it is impractical to
deploy a custom OS image(s) at an application granularity,
particularly in a multi-tenant environment, limiting the prac-
tical applications of these new techniques.
ghOSt provides general-purpose delegation of schedul-

ing policies to userspace processes in a Linux environment.
ghOSt provides state encapsulation, communication, and
action mechanisms that allow complex expression of sched-
uling policies within a userspace agent, while assisting in
synchronization. Programmers use any language to develop
and optimize policies, which are modified without a host
reboot. ghOSt supports a wide range of scheduling models,
from per-CPU to centralized, run-to-completion to preemp-
tive, and incurs low overheads for scheduling actions. We
demonstrate ghOSt’s performance on both academic and real-
world workloads, including Google Snap and Google Search.
We show that by using ghOSt instead of the kernel scheduler,
we can quickly achieve comparable throughput and latency
while enabling policy optimization, non-disruptive upgrades,
and fault isolation for our data center workloads. We open-
source our implementation to enable future research and
development based on ghOSt.

CCS Concepts • Software and its engineering;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’21, October 26–28, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483542

Keywords Operating systems, thread scheduling

ACM Reference Format:
Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner,
and Christos Kozyrakis. 2021. ghOSt: Fast & Flexible User-Space
Delegation of Linux Scheduling. In ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP ’21), October 26–28, 2021,
Virtual Event, Germany. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3477132.3483542

1 Introduction
CPU scheduling plays an important role in application perfor-
mance and security. Tailoring policies for specific workload
types can substantially improve key metrics such as latency,
throughput, hard/soft real-time characteristics, energy effi-
ciency, cache interference, and security [1–26]. For example,
the Shinjuku request scheduler [25] optimized highly disper-
sive workloads – workloads with a mix of short and long
requests – improving request tail latency and throughput
by an order of magnitude. The Tableau scheduler for virtual
machine workloads [23] demonstrated improved throughput
by 1.6× and latency by 17× under multi-tenant scenarios.
The Caladan scheduler [21] focused on resource interference
between foreground low-latency apps and background best
effort apps, improving network request tail latency by as
much as 11,000×. To mitigate recent hardware vulnerabil-
ities [27–32], cloud platforms running multi-tenant hosts
had to rapidly deploy new core-isolation policies, isolating
shared processor state between applications.

Designing, implementing, and deploying new scheduling
policies across a large fleet is an exacting task. It requires de-
velopers to design policies capable of balancing the specific
performance requirements of many applications. The imple-
mentation must conform with a complex kernel architecture,
and errors will, in many cases, crash the entire system or
otherwise severely impede performance due to unintended
side effects [33]. Even when successful, the disruptive nature
of an upgrade carries its own opportunity cost in host and
application downtime. This creates a challenging conflict
between risk-minimization and progress.
Prior attempts to improve performance and reduce com-

plexity in the kernel by designing userspace solutions have
significant shortcomings: they require substantial modifi-
cation of application implementation [1, 10, 21, 25, 34, 35],

https://doi.org/10.1145/3477132.3483542
https://doi.org/10.1145/3477132.3483542
https://doi.org/10.1145/3477132.3483542

User
space

Transactions

 Syscalls

Thread/CPU Messages ghOSt agents

CPU scheduling
decisions

Kernel

Workload

Status words

Optional scheduling hints

Kernel
space

ghOSt
scheduling class

Figure 1. Overview of ghOSt.
require dedicated resources in order to be highly respon-
sive [1, 21, 25], or otherwise require application-specific
kernel modifications [1, 2, 10, 21, 25, 34–37].

Although Linux supports multiple scheduling implemen-
tations; tailoring, maintaining, and deploying a different
mechanism for each application is impractical to manage on
a large fleet. One of our goals is to formalize which kernel
changes are required to enable a plethora of optimizations
(and experimentation) in userspace, on a stable kernel ABI.

Further, the hardware landscape is ever changing, stress-
ing existing scheduling abstraction models [38] originally
designed to manage simpler systems. Schedulers must evolve
to support these rapid changes: increasing core counts, new
sharing properties (e.g., SMT), and heterogeneous systems
(e.g., big.LITTLE [39]). NUMA properties of even a single-
socket platform continue to increase (e.g., chiplets [40]). Com-
pute offloads such as AWS Nitro [41] and DPUs [42] as well
as domain-specific accelerators such as GPUs and TPUs [43]
are new types of tightly coupled compute devices that exist
entirely beyond the domain of a classical scheduler. We need
a paradigm to more efficiently support the evolving prob-
lem domain than is possible today with monolithic kernel
implementations.

In this paper, we present the design of ghOSt and its eval-
uation on production and academic use-cases. ghOSt is a
scheduler for native OS threads that delegates policy de-
cisions to userspace. The goal of ghOSt is to fundamentally
change how scheduling policies are designed, implemented, and
deployed. ghOSt provides the agility of userspace development
and ease of deployment, while still enabling `s-scale schedul-
ing. ghOSt provides abstraction and interface for userspace
software to define complex scheduling policies, from the
per-CPU model to a system-wide (centralized) model. Impor-
tantly, ghOSt decouples the kernel scheduling mechanism
from policy definition. The mechanism resides in the kernel
and rarely changes. The policy definition resides in userspace
and rapidly changes. We open-source our implementation to
enable future research and development using ghOSt [44, 45].

By scheduling native threads, ghOSt supports existing ap-
plications without any changes. In ghOSt (Fig. 1), the sched-
uling policy logic runs within normal Linux processes, de-
noted as agents, which interact with the kernel via the ghOSt
API. The kernel notifies the agent(s) of state changes for
all managed threads – e.g., thread creation/block/wakeup
– via message queues (§3.1) in an asynchronous path. The

agent(s) then use a transaction-based API in a synchronous
path to commit scheduling decisions for the threads (§3.2).
ghOSt supports concurrent execution of multiple policies,
fault isolation, and allocation of CPU resources to different
applications. Importantly, to enable practical transition of
existing systems in the fleet to use ghOSt, it co-exists with
other schedulers running in the kernel, such as CFS (§3.4).
We demonstrate that ghOSt enables us to define various

policies leading to performance comparable or better than
existing schedulers on both academic and production work-
loads (§4). We characterize the overheads of key ghOSt op-
erations (§4.1). We show that ghOSt’s overheads are small
and range from 265 ns for message delivery, several hundred
nanoseconds to context-switch into an agent, and 888 ns
to schedule a thread, making ghOSt scheduling overheads
only slightly higher than in existing kernel schedulers. With
amortization, these overheads allow just a single ghOSt agent
to schedule over 2 million threads per second (Fig. 5). We
evaluate ghOSt by implementing centralized and preemptive
policies for `s-scale workloads that lead to high throughput
and low tail latency in the presence of high request dis-
persion [10, 25] and antagonists [1, 21] (§4.2). We compare
ghOSt to Shinjuku [25], a specialized modern data plane, to
show ghOSt’s minimal overhead and competitive `s-scale
performance (within 5% of Shinjuku) while supporting a
broader set of workloads, including multi-tenancy.
We also implement a policy for Snap [2], our production

packet-switching framework used in our data centers, lead-
ing to comparable and in some cases 5-30% better tail la-
tency than MicroQuanta, our soft real-time scheduler used
today (§4.3). We then implement a ghOSt policy for ma-
chines running Google Search (§4.4). By customizing the
policy to the machine’s topology, in <1000 total lines of code,
we demonstrate that ghOSt matches the throughput pro-
vided by the existing scheduler, and often outperforms the
latency by 40-50%. Lastly, we implement a policy for virtual
machines (§4.5) that is secure against recently discovered
microarchitectural vulnerabilities [27–32] and show that
ghOSt’s performance is competitive with a pure in-kernel
policy implementation. With ghOSt, scheduling strategies —
previously requiring extensive kernel modification — can be
implemented in just 10s or 100s of lines of code.

2 Background & Design Goals
Large cloud providers and users (e.g., cloud clients) are mo-
tivated to deploy new scheduling policies to optimize per-
formance for key workloads running on increasingly com-
plex hardware topologies, and provide protection against
new hardware vulnerabilities such as Spectre [29–32] and
L1TF/MDS [27, 31, 46] by isolating untrusted threads on
separate physical cores.

Scheduling in Linux. Linux supports implementing mul-
tiple policies via scheduling classes [7]. Classes are ordered
by their priority: a thread scheduled with a higher priority

class will preempt a thread scheduled with a lower prior-
ity class. To optimize performance of specific applications,
developers can modify a scheduling class to better fit the ap-
plication’s needs, e.g., prioritizing the application’s threads to
reduce network latency [21] or scheduling the application’s
threads using real-time policies to meet deadlines [47] for
database queries. In principle, a cloud provider or an appli-
cation developer can also create an entirely new class/policy
(rather than modify an existing one) optimized for a specific
service, such as cloud virtual machines [24] or a reinforce-
ment learning framework [20]. However, the complexity of
implementing and maintaining these policies in the kernel
leads many developers to instead use existing generic poli-
cies, such as the Linux Completely Fair Scheduler (CFS [7]).
Therefore, existing classes in Linux are designed to support
as many use-cases as possible. It is then challenging to use
these overly-generic classes to optimize high-performance
applications to use the hardware at maximum efficiency.

Implementing schedulers is hard. When developers
do embark on designing a new kernel scheduler, they find
these schedulers hard to implement, test, and debug. Sched-
ulers are typically written in low-level languages (C and
assembly), cannot leverage useful libraries (e.g., Facebook
Folly [48] and Google Abseil [49]), and cannot be intro-
spected with popular debugging tools. Lastly, schedulers
depend on and interact with complicated synchronization
primitives including atomic operations, RCU [50], task pre-
emption, and interrupts, making development and debug-
ging even harder. Long-term maintenance is also a challenge.
Linux rarely merges new scheduling classes, and would be
especially unlikely to accept a highly-tuned non-generic
scheduler. Thus, custom schedulers are maintained out-of-
tree with consistent merge churn as upstream Linux evolves.

Deploying schedulers is even harder. Deploying
changes to scheduling policy requires deploying a new ker-
nel across a large fleet. This is extremely challenging for
cloud providers. So much so that, in our experience, kernel
rollouts are not well-tolerated below an O(month) granular-
ity. To install a new kernel on a machine, cloud providers
must migrate or terminate the machine’s assigned work, qui-
esce the machine, install the new system software, allow
system daemons to re-initialize, and finally, wait for newly
assigned applications to become ready to serve again. Initial
deployment of the new scheduler is only the beginning. After
the first release candidate is deployed, the cloud provider will
make frequent changes to fix bugs and tune performance,
repeating the expensive process described above. At Google,
for instance, there was a scheduler bug on our disk servers
that led tomillions of dollars of lost revenue until the bugwas
noticed and fixed [51]. ghOSt enables scheduler update, test-
ing, and tuning without having to update the kernel and/or
reboot machines and applications.

User-level threading is not enough. ghOSt is a ker-
nel scheduler running in userspace, scheduling native OS

threads. In contrast, user-level threading runtimes sched-
ule user threads. These runtimes [22, 48, 52–60] multiplex
M user threads on N native threads. This is inherently un-
predictable: although the userspace runtime may control
which user thread runs on a given native thread, it cannot
control when that native thread is scheduled to actually run
or which CPU it runs on. Even worse, the kernel can de-
schedule a thread holding a user-level lock. To overcome
this limitation, developers have two options. (1) Dedicate
CPUs to the native threads running the user-threads, thus
guaranteeing implicit control. However, this option wastes
resources at low workload utilization, because the dedicated
CPUs cannot be shared with another application (see §4.2),
and requires extensive coordination around scaling capacity.
Alternatively, developers can (2) stay at the mercy of the
native thread scheduler, allowing CPUs to be shared, but
ultimately losing the control over response time that they
turned to a user-level runtime for. ghOSt enables the best
of both worlds by guaranteeing control over response time
while allowing flexible sharing of CPU resources.

Custom scheduler/data planeOSperworkload is im-
practical. Previous work, such as Shinjuku, Shenango, and
others [1, 10, 21, 25, 34], implemented highly specialized data
plane operating systems with custom scheduling policies and
network stacks for specific network workloads. Although
these systems provide good performance for their targets,
their kernel implementation cannot be easily changed and
they provide poor performance for other workloads. Shin-
juku [25] is 2,535 lines of code and cannot co-exist with other
applications in the system (§4.2). Shenango [1] is 8,399 lines
of code and can only implement a single thread scheduling
policy for network workloads. Adding an additional policy
requires significant code modification. Further, both systems
are unable to run on machines without particular NICs and
Shenango cannot schedule non-network workloads.

Custom scheduling via BPF is insufficient. An attrac-
tive way to customize kernel scheduling is to inject BPF [61]
programs into the kernel scheduler, as has been done for
other kernel subsystems [62]. It is indeed possible to im-
plement a Linux scheduler class whose function pointers
call a BPF program to decide which thread to run next. Un-
fortunately, BPF is limited in its expressiveness and which
kernel data structures it can access. For example, the BPF-
verifier must be able to determine that loops will exit, and
BPF programs cannot use floats.

More importantly, BPF programs run synchronously, mean-
ing they must react quickly to scheduling events, blocking
the CPU until they complete. An asynchronous scheduler, in
contrast, can receive scheduling events and react to these
events at a later time. Therefore, an asynchronous model,
such as the global scheduler described in §3.3, can make
scheduling decisions based on a wider perspective of the sys-
tem, comprised from multiple scheduling events. That being

Threads:

CPU MCPU 0

0
Userspace

Kernel

Message
queues:

Global agent
N+2

CPU N+1 CPU N+2

Inactive Agent
N+1

Inactive agent
M

G

Enclave 0 running per-CPU scheduling on CPUs 0 → N Enclave 1 running centralized scheduling on CPUs N+1 → M

Agent
0

CPU N

N

Agent
N

CPU 1

1

Agent
1

Schedule
thread

Figure 2. ghOSt policies manage CPUs assigned to enclaves. Each enclave can be managed by a different ghOSt policy.

said, BPF plays a large role in ghOSt to accelerate fast-path op-
erations and provide customization at performance-critical
spots in the kernel, as explained in §3.2.
2.1 Design Goals
ghOSt’s goal is to introduce a new paradigm for designing,
optimizing, and deploying schedulers. We design ghOSt with
the following requirements in mind:

Policies should be easy to implement and test. As
new workloads, kernels, and heterogeneous hardware en-
ter the data center, implementing new scheduling policies
should not mandate yet another kernel patch. As DashFS [63]
demonstrated, implementing systems in userspace rather
than kernel space simplifies development and enables faster
iteration as popular languages and tools can be used.

Scheduling expressiveness and efficiency. Cloud
providers and users need to express scheduling policies for a
wide variety of optimization targets, including throughput-
oriented workloads, `s-scale latency-critical workloads, soft
real-time, and energy efficiency requirements.

Enabling scheduling decisions beyond the per-CPU
model. The Linux scheduler ecosystem implements schedul-
ing algorithms that make per-CPU scheduling decisions, i.e.,
they use a per-CPU model. Recent work demonstrates com-
pelling tail latency improvements for `s-scale workloads via
centralized, dedicated polling scheduling threads [1, 21, 25],
i.e., they use a centralized model. Other systems such as ESXi
NUMA [64] and Minos [15] have also demonstrated the ben-
efits of coordination at a granularity coarser than a single
CPU, such as per-NUMA-node. The centralized model is
difficult to support within Linux’s existing “Pluggable Sched-
uler” framework, as the framework is implemented with the
assumption of a per-CPU model. ghOSt should support dele-
gating scheduling decisions to remote CPUs to support all
scheduling models from per-CPU to centralized and every-
thing in between.

Supportingmultiple concurrent policies.Machine ca-
pacity is continuing to horizontally scale with the addition of
hundreds of cores and new accelerators, supporting multiple
loads and tenants on a single server. ghOSt must support
partitioning and sharing the machine so that multiple sched-
uling policies may execute in parallel.

Non-disruptive updates and fault isolation. OS up-
grades on a large fleet incur expensive downtime. The work

assigned to each host must be migrated or restarted and
the host itself must reboot. This time-consuming process
reduces compute capacity and hinders the data center’s fault-
tolerance until the update completes. This is even a challenge
for users rolling out their own policies for similar reasons:
they must maintain service uptime while manually taking
down and upgrading nodes. Therefore, the scheduling policy
should be decoupled from the host kernel and ghOSt must
allow new policies to be deployed, updated, rolled-back, or
even crash without incurring the machine-reboot costs.

3 Design
We now discuss ghOSt’s design and implementation, and
explain how they achieve our requirements listed in §2.

ghOSt overview. Fig. 1 summarizes the ghOSt design.
Userspace agents make scheduling decisions and instruct
the kernel how to schedule native threads on CPUs. ghOSt’s
kernel side is implemented as a scheduling class, akin to the
commonly used CFS class. This scheduling class provides
userspace code with a rich API to define arbitrary scheduling
policies. To help the agents make scheduling decisions, the
kernel exposes thread state to the agents via messages and
status words (§3.1). The agents then instruct the kernel on
scheduling decisions via transactions and system calls (§3.2).

We will use two motivating examples throughout this sec-
tion: per-CPU scheduling and centralized scheduling. Clas-
sical kernel scheduling policies, such as CFS, are per-CPU
schedulers. Although these policies typically employ load-
balancing and work-stealing to even out the load across the
system, they still operate from a per-CPU perspective. The
centralized scheduling example is similar to the models pro-
posed in Shinjuku [25], Shenango [1], and Caladan [21]. In
this case, there is a single global entity constantly observing
the entire system and making scheduling decisions for all
threads and CPUs under its purview.

Threads and CPUs. ghOSt schedules native threads on
CPUs. All threads mentioned in this section are native
threads, in contrast to user-level threads mentioned in §2.
We refer to logical execution units as CPUs. For example, we
consider a machine with 56 physical cores and 112 logical
cores (hyperthreads) to have 112 CPUs.

Partitioning themachine. ghOSt supports multiple con-
current policies on a single machine using enclaves. A system

can be partitioned into multiple independent enclaves, at
CPU granularity, each of which runs its own policy, as de-
picted in Fig. 2. From a scheduling perspective, the enclaves
are isolated. Partitioning makes sense especially when run-
ning different workloads on a single machine. It is often
useful to set the granularity of these enclaves by machine
topology, such as per-NUMA-socket or per-AMD-CCX [40].
Enclaves also help in isolating faults, limiting the damage of
an agent-crash to the enclave it belongs to (see §3.4).

ghOSt userspace agents. To achieve many of our de-
sign goals, the scheduling policy logic is implemented in
userspace agents. The agents can be written in any language
and debugged by standard tools, making them easier to im-
plement and test. To achieve fault tolerance and isolation, if
one or several of the agents crash, the system will fall back
to the default scheduler, such as CFS. The machine is then
still fully functional while a new ghOSt userspace agent is
launched — either the last known stable release or a newer
revision with a fix.

Thanks to the crash resilience property, updating a sched-
uling policy amounts to relaunching the userspace agents,
without having to reboot the machine. This property enables
experimentation and rapid policy customization for a wide
variety of hardware and workloads. Developers can make
a policy tweak and simply relaunch the agents. Dynamic
update of a ghOSt policy is discussed in §3.4.
Regardless of the scheduling model — per-CPU or cen-

tralized — each CPU managed by ghOSt has a local agent,
as shown in Fig. 2. In the per-CPU case, each agent is re-
sponsible for thread scheduling decisions for its own CPU.
In the centralized case, a single global agent is responsible
for scheduling all CPUs in the enclave. All other local agents
are inactive. Each agent is implemented in a Linux pthread
and all agents belong to the same userspace process.

3.1 Kernel-to-Agent Communication
Exposing thread state to the agents. For agents to make
scheduling decisions for threads under their purview, the ker-
nel must expose thread state to the agents. One approach is to
memory-map existing kernel data structures into userspace,
such as task_structs, so agents can inspect them to infer
the thread state. However, the availability and format of
these data structures varies between kernels and kernel ver-
sions, tightly coupling userspace policy implementation with
kernel version. Another approach is to expose thread state
via sysfs files, in a /proc/pid/... fashion. However, file
system APIs are inefficient for fastpath operations, making it
difficult to support `s-scale policies: open/read/fseek, orig-
inally designed for block devices, are too slow and complex
(e.g., require error handling and data-parsing).

Ultimately, we need a kernel-userspace API that is both
fast and does not depend on the underlying kernel imple-
mentation of threads. Inspired by distributed systems, we
use messages as an efficient and simple solution.

ghOSt messages. In ghOSt, the kernel uses the messages
listed in Table 1 to notify the userspace agents of thread
state changes. For example, if a thread was blocked and now
ready to run, the kernel posts a THREAD_WAKEUPmessage. Ad-
ditionally, the kernel informs the agents of timer ticks with a
TIMER_TICKmessage. To help agents verify they are making
decisions based on the most up-to-date state, messages also
have sequence numbers, as will be explained later.

Message queues. Messages are delivered to agents via
message queues. Each thread scheduled under ghOSt is as-
signed a single queue and all messages about that thread’s
state changes are delivered to that queue. In the per-CPU
example, each thread is assigned to a queue corresponding
to the CPU it is intended to run on (Fig. 2, left). In the cen-
tralized example, all threads are assigned to the global queue
(Fig. 2, right). Messages for CPU events, such as TIMER_TICK,
are routed to the queue of the agent thread associated with
the CPU.

Although there are many ways to implement queues, we
opted to use custom queues in shared memory to efficiently
handle agent wakeups (explained below). We deemed ex-
isting queue mechanisms to be insufficient for ghOSt as
they only exist in specific kernel versions. For instance, the
BPF system passes BPF events to userspace via BPF ring
buffers [65] and recent versions of Linux also pass asyn-
chronous I/O messages to userspace via io_urings [66].
These are both fast lockless ring buffers that synchronize
consumer/producer access. However, older Linux kernels
and other operating systems do not support them.

Thread-to-queue association. After ghOSt’s enclave
initialization, there is a single default queue in the en-
clave. The agent process can create/destroy queues using
the CREATE/DESTROY_QUEUE()API. Threads added to ghOSt
are implicitly assigned to post messages to the default
queue. That assignment can be changed by the agent via
ASSOCIATE_QUEUE().

Queue-to-agent association. A queue may be option-
ally configured to wake up one or more agents when mes-
sages are produced into the queue. The agent can configure
the wakeup behavior via CONFIG_QUEUE_WAKEUP(). In the
per-CPU example, each queue is associated with exactly one
CPU and configured to wake up the corresponding agent. In
the centralized example, the queue is continuously polled
by the global agent so a wakeup is redundant and therefore
not configured. The latency of producing a message into a
queue and observing it in the agent is discussed in §4.1.
Agent wakeup uses the standard kernel mechanism to

wake up a blocked thread. This involves identifying the agent
thread to be woken up, marking it as runnable, optionally
sending an interrupt to the target CPU to trigger a reschedule,
and performing a context switch to the agent thread.

Moving threads between queues/CPUs. In our per-
CPU example, to enable load-balancing and work-stealing
between CPUs, agents can change the routing of messages

THREAD_CREATED
THREAD_BLOCKED
THREAD_PREEMPTED
THREAD_YIELD
THREAD_DEAD
THREAD_WAKEUP
THREAD_AFFINITY
TIMER_TICK

AGENT_INIT()
START_GHOST()
TXN_CREATE()
TXNS_COMMIT()
TXNS_RECALL()
CREATE_QUEUE()
DESTROY_QUEUE()
ASSOCIATE_QUEUE()
CONFIG_QUEUE_WAKEUP()

Messages Syscalls

Table 1. ghOSt messages and system calls.

from threads to queues via ASSOCIATE_QUEUE(). It is up to
the agent implementation (in userspace) to properly coordi-
nate the message routing across queues to agents. If a thread
has its association change from one queue to another while
there are pending messages in the original queue, the associ-
ation operation will fail. In that case, the agent must drain
the original queue before re-issuing ASSOCIATE_QUEUE().
Synchronizing agents with the kernel. Agents oper-

ate on the system’s state as observed via messages. How-
ever, while the agent is making a scheduling decision, new
messages may arrive into the queue which could change
that decision. This challenge is slightly different for the per-
CPU example versus the centralized scheduling example (see
§3.2 and §3.3). Either way, we address this challenge with
agent/thread sequence numbers: Every agent has a sequence-
number, 𝐴𝑠𝑒𝑞 , which is incremented whenever a message is
posted to a queue associated with that agent. We explain our
use of 𝐴𝑠𝑒𝑞 for the per-CPU example in §3.2. Every thread 𝑇
has a sequence-number,𝑇𝑠𝑒𝑞 , which is incrementedwhenever
that thread posts a new state change message,𝑀𝑇 . When an
agent pops the queue it receives both a message and its cor-
responding sequence number: (𝑀𝑇 ,𝑇𝑠𝑒𝑞). We explain how
we use 𝑇𝑠𝑒𝑞 for the centralized scheduling example in §3.3.

Exposing sequence numbers via shared memory.
ghOSt allows agents to efficiently poll auxiliary information
about thread and CPU state through status words, mapped
into the agent’s address space. For brevity, we only discuss
our use of status words to expose sequence numbers, 𝐴𝑠𝑒𝑞

and𝑇𝑠𝑒𝑞 , to the agents. When the kernel updates a thread’s or
agent’s sequence number, it also updates the corresponding
status word. Agents can then read the sequence numbers
from the status words in the shared mapping.
3.2 Agent-to-Kernel Communication
We now describe how the agents instruct the kernel which
thread to schedule next.

Sending scheduling decisions via transactions.
Agents send scheduling decisions to the kernel by commit-
ting transactions. Agents must be able to schedule both their
local CPU (per-CPU case) as well as other remote CPUs
(centralized case). The commit mechanism must be fast to
support `s-scale policies and scale to hundreds of cores.
For the per-CPU example, a syscall interface, in theory,
would suffice. For the centralized case, the agent needs to
efficiently send scheduling requests to multiple CPUs and

1 void Agent:: PerCpuSchedule () {

2 DrainMessageQueue (); // Read messages from queue

3 Thread *next = runqueue_.Dequeue ();

4 if (next == nullptr) return; // Runqueue empty.

5 // Schedule thread:

6 Transaction *txn = TXN_CREATE(next ->tid , my_cpu);

7 TXNS_COMMIT ({txn});

8 if (txn ->status != TXN_COMMITTED) {

9 // Txn failed. Move thread to end of runqueue.

10 runqueue_.Enqueue(next);

11 return;

12 }

13 // The schedule has succeeded for `next `.

14 }

Figure 3. Scheduling a thread in per-CPU agent code.

then inspect whether those requests succeeded or not. A
shared memory interface is therefore more suitable. As
a side note, using transactions in shared memory as the
scheduling interface would allow, in the future, to offload
scheduling decisions to an external device with access to
that memory.

Inspired by transactional memory [67] and database [68]
systems, we designed our own transaction API, imple-
mented via shared memory. These systems support fast, dis-
tributed commit operations with atomic semantics, and there
could be multiple commits that simultaneously target the
same remote node. ghOSt agents require similar properties.
Agents open a new transaction in shared memory with the
TXN_CREATE() helper function. The agent writes both the
TID of the thread to schedule along with the ID of the CPU to
schedule the thread on. In the per-CPU example, each agent
only schedules its own CPU. When the transaction is filled
in, the agent commits it to the kernel via the TXNS_COMMIT()
syscall, which kicks off the commit procedure and triggers
the kernel to initiate a context switch. A simplified example
is shown in Fig. 3.

Group commits. In the centralized scheduling example,
to allow ghOSt to scale to hundreds of CPUs and hundreds of
thousands of transactions per second, we must mitigate the
expensive cost of system calls. We amortize the cost of trans-
actions by introducing group commits. Group commits also
reduce the number of interrupts to be sent to other CPUs,
similar to Caladan [21]. An agent commits multiple transac-
tions by passing all of them to the TXNS_COMMIT() syscall.
This syscall amortizes the expensive overheads over several
transactions. Most importantly, it amortizes the overhead of
sending interrupts by using the batch interrupt functionality
present in most processors. Instead of sending multiple inter-
rupts (one per transaction), the kernel sends a single batch
interrupt to the remote CPUs, saving significant overhead.

Sequence numbers and transactions. In the per-CPU
example, the agent committing a transaction is giving up its
CPU to the target thread it is scheduling. Messages posted to
the queue while the agent is running do not cause a wakeup,
since the agent is already running. However, the new mes-
sage in the queue might be from a higher-priority thread,

1 void GlobalAgent :: CentralizedSchedule () {

2 DrainMessageQueue ();

3 map <Cpu , Thread*> assignments;

4 // GetIdleCPUs () will return all available CPUs.

5 for (const Cpu& cpu : GetIdleCPUs ()) {

6 Thread *next = runqueue_.Dequeue ();

7 if (next == nullptr) break; // Runqueue empty.

8 assignments[cpu] = next; // Run `next ` on `cpu `.

9 }

10 // Now send transactions for all assignments:

11 vector <Transaction*> txns = Schedule(assignments);

12 for (const Transaction *txn : txns) {

13 // Check if `txn ` committed successfully.

14 if (txn ->status != TXN_COMMITTED) {

15 Thread *next = GetThreadFromTID(txn ->tid);

16 // Transaction failed. Re-enqueue.

17 runqueue_.Enqueue(next);

18 continue;

19 } } }

20 vector <Transaction*> GlobalAgent :: Schedule(

21 const map <Cpu , Thread*>& assignments) {

22 vector <Transaction*> txns;

23 for (const auto& [cpu , next] : assignments) {

24 Transaction *txn = TXN_CREATE(next ->tid , cpu);

25 txns.push_back(txn);

26 }

27 TXNS_COMMIT(txns);

28 return txns;

29 }

Figure 4. A simplified example of a global agent.

and would affect the scheduling decision if the agent were
aware of it. The agent will only get a chance to inspect that
message on the next wakeup, which is too late. We now ex-
plain how to address this challenge via sequence numbers
for the per-CPU example. We explain the slightly different
case for centralized scheduling in §3.3.

We resolve this challenge using the agent sequence num-
ber, 𝐴𝑠𝑒𝑞 . An agent polls for its 𝐴𝑠𝑒𝑞 by inspecting the agent-
thread’s status word. Recall that 𝐴𝑠𝑒𝑞 is incremented when a
newmessage is posted to the queue associated with the agent.
The order of operations is: 1) Read 𝐴𝑠𝑒𝑞 ; 2) Read messages
from queue; 3) Make a scheduling decision; and 4) Send 𝐴𝑠𝑒𝑞

alongside the transaction to TXNS_COMMIT(). If the𝐴𝑠𝑒𝑞 sent
with the transaction is older than the current 𝐴𝑠𝑒𝑞 observed
by the kernel (i.e., a new message was posted to the agent’s
queue), the transaction is considered “stale” and will fail with
an ESTALE error. The agent then drains its queue to retrieve
the newer messages and repeats the process.

Accelerating schedulingwith BPF. The user-level flex-
ibility provided by ghOSt is not free: message delivery and
group scheduling incur up to 5 `s (see Table 3 in §4.1); in the
centralized scheduling model, a thread might wait an entire
centralized-scheduling loop until a scheduling decision is
committed on its behalf (30 `s in §4.4).
ghOSt allows recovering that lost CPU time via a cus-

tom BPF program, attached by the agent to the kernel’s
pick_next_task() function. When a CPU becomes idle and
the agent has not already issued a transaction, the BPF pro-
gram issues its own transaction, picking a thread to run on
that CPU. The BPF program communicates with the agent

via a shared-memory window into the agent’s address space.
The specifics of how the agent uses the BPF infrastructure
to schedule threads on CPUs is part of the scheduling policy.
The ghOSt BPF program is essentially an extension of the
agent itself, and hence the BPF bytecode is embedded in the
agent binary, using libbpf [69].

3.3 The Centralized Scheduler
We now explain additional implementation details required
for constructing a centralized scheduling ghOSt policy.

One global agent with a single queue. For centralized
scheduling, there is a single global agent polling a single
message queue andmaking scheduling decisions for all CPUs
managed under ghOSt. If a designated CPU already runs a
ghOSt thread, the transaction will preempt that previous
thread in favor of the new one. A simplified example of
the scheduler’s code is depicted in Fig. 4. Intuitively, the
centralized policy may seem incapable of supporting `s-scale
scheduling, thoughwe show in §4 that ghOSt has comparable
or better overall performance on our production workloads.

Avoiding preemption of the global agent. To support
`s-scale scheduling, the global agent must continuously run,
as any preemption will directly lead to scheduling delays.
To prevent global agent preemption triggered by a higher
priority kernel scheduling class, ghOSt assigns all agents a
high kernel priority, similar to real-time scheduling. In other
words, no other thread in the machine, whether ghOSt or
non-ghOSt, can preempt agent-threads. This priority assign-
ment, however, will destabilize the system unless handled
carefully. For example, most systems have per-CPU daemon
worker threads that must run on their designated CPUs.

ghOSt maintains the system’s stability in the following
way. All inactive agents immediately yield, vacating their
CPUs. Whenever a non-ghOSt thread needs to run on the
global agent’s CPU, 𝐶𝑃𝑈𝑔𝑙𝑜𝑏𝑎𝑙 , the global agent performs a
“hot handoff” to an inactive agent on another CPU, 𝐶𝑃𝑈𝑖𝑑𝑙𝑒 .
For example, if the kernel CFS scheduler tries to schedule
a thread on 𝐶𝑃𝑈𝑔𝑙𝑜𝑏𝑎𝑙 , the global agent will first find an
idle CPU (𝐶𝑃𝑈𝑖𝑑𝑙𝑒) and then wake up the inactive agent on
𝐶𝑃𝑈𝑖𝑑𝑙𝑒 to serve as the new global agent. Once𝐶𝑃𝑈𝑖𝑑𝑙𝑒 runs
the global agent, the old global agent yields, allowing the
CFS thread to run on 𝐶𝑃𝑈𝑔𝑙𝑜𝑏𝑎𝑙 .

Sequence numbers and centralized scheduling. At
some point, the global agent may have an inconsistent view
of a thread’s state. For example, a thread 𝑇 might post a
THREAD_WAKEUPmessage. The global agent receives this mes-
sage and decides to schedule 𝑇 on 𝐶𝑃𝑈𝑓 . In the meantime,
some entity in the system invoked sched_setaffinity(),
leading to a THREAD_AFFINITY message, forbidding 𝑇 from
running on 𝐶𝑃𝑈𝑓 . We need a mechanism to ensure that the
transaction that schedules 𝑇 on 𝐶𝑃𝑈𝑓 will fail.
In principle, we can use agent sequence numbers, as de-

scribed above for the per-CPU example. However, the global

Linux CFS (kernel/sched/fair.c) 6,217 LOC
Shinjuku [25] (NSDI ’19) 3,900 LOC
Shenango [1] (NSDI ’19) 13,161 LOC
ghOSt Kernel Scheduling Class 3,777 LOC
ghOSt Userspace Support Library 3,115 LOC
Shinjuku Policy (§4.2) 710 LOC
Shinjuku + Shenango Policy (§4.2) 727 LOC
Google Snap Policy (§4.3) 855 LOC
Google Search Policy (§4.4) 929 LOC
Secure VM Kernel Policy (§4.5) 7,164 LOC
Secure VM ghOSt Policy (§4.5) 4,702 LOC

Table 2. Lines of code for ghOSt and compared systems.

agent has to support many thousands of threads that con-
tinuously post messages to the global queue, making it time
consuming to drain the queue. Unlike the local agent in the
per-CPU example, the global agent is not giving up its own
CPU. The global agent must only verify that it is up-to-date
with respect to the thread 𝑇 being scheduled right now.

We solve this issue with thread sequence numbers. Recall
that every queued message𝑀𝑇 is tagged with the thread se-
quence number 𝑇𝑠𝑒𝑞 as (𝑀𝑇 ,𝑇𝑠𝑒𝑞). When the agent commits
a transaction for thread𝑇 , it sends the transaction along with
the most recent sequence number for 𝑇 it is aware of: 𝑇𝑠𝑒𝑞 .
When the kernel receives the transaction, it verifies that𝑇𝑠𝑒𝑞
is up to date with respect to the thread in the transaction.
Otherwise, the transaction fails with an ESTALE error.

3.4 Fault Isolation and Dynamic Upgrades
Interaction with other kernel scheduling classes. One
of ghOSt’s design goals is enabling easy adoption on existing
systems. So even if a ghOSt policy is faulty, we still want
ghOSt-managed threads to interact well with other threads
in the system. We want to avoid ghOSt threads causing un-
intended consequences for other threads, such as starvation,
priority inversion, deadlock, etc.

We achieve this goal by assigning ghOSt’s kernel scheduler
class a lower priority (§2) than the default scheduler class —
typically CFS — in the kernel’s scheduling class hierarchy.
The result is that most threads in the system will preempt
ghOSt threads. The preemption of a ghOSt thread leads to
the creation of a THREAD_PREEMPT message, triggering the
relevant agent (which is running in a different high priority
scheduling class) to make a scheduling decision. The agent
further decides how to handle the preemption.

Dynamic upgrades and rollbacks. ghOSt enables rapid
deployment, since updating the scheduling policy (i.e., the
agents) does not require restarting the kernel or applications.
Many production services can take minutes to hours to start,
particularly to populate in-memory caches. Similarly, we
want to minimize interruptions for client virtual machines.
These long-running applications continue to run correctly
during a planned agent update or an unplanned agent crash.
ghOSt achieves dynamic upgrades by either (a) replacing the

agents while keeping the enclave infrastructure intact, or by
(b) destroying the enclave and starting from scratch.

Replacing agents and destroying enclaves. ghOSt sup-
ports updating an agent “in-place” without destroying the
enclave. Userspace code can query, and epoll on, whether
an agent is attached to an enclave. To upgrade an agent, we
run both old and new agents concurrently; the new agent
blocks until the old agent crashes or exits and is no longer
attached. The new agent extracts the state of all threads in
the enclave from the kernel and resumes scheduling. If this
process fails, either the kernel or userspace code can destroy
the enclave. Destroying the enclave kills all the agents in
that enclave, keeping other enclaves in the system intact,
and automatically moves all threads in the destroyed enclave
back to CFS. At this point, the threads are still functioning
normally but are scheduled by CFS instead of ghOSt.

ghOSt watchdog. Scheduling bugs in ghOSt or in any
other kernel scheduler have system-wide consequences. For
example, a ghOSt thread may be preempted while holding
a kernel mutex, and if it is not scheduled for too long, it
could transitively stall other threads including those in CFS
or other ghOSt enclaves. Similarly, the machine will grind
to a halt if critical threads such as garbage collectors and
I/O pollers are not scheduled. As a safety mechanism, ghOSt
automatically destroys enclaves with misbehaving agents.
For example, the kernel will destroy an enclave when it
detects an agent has not scheduled a runnable thread within
a user-configurable number of milliseconds.

4 Evaluation
Our evaluation of ghOSt focuses on three questions: (a)What
are the overheads of ghOSt-specific operations, which are
not present in classical schedulers (§4.1); (b) How do schedul-
ing policies implemented with ghOSt perform in comparison
to prior work, such as Shinjuku [25] (§4.2); and (c) Is ghOSt
a viable solution for large-scale and low-latency produc-
tion workloads, including Google Snap (§4.3), Google Search
(§4.4), and virtual machines (§4.5)?

4.1 Analysis of ghOSt Overheads and Scaling
Lines of code: Table 2 presents the lines of code (LOC) for
ghOSt and, for reference, related work such as the Linux CFS
scheduler. ghOSt is production-ready and flexibly supports
a range of scheduling policies for our production workloads
with 40% less kernel code than CFS. The policies in this sec-
tion can be short (few 100s LOC) as they utilize common
functions from a userspace library. This reflects an advan-
tage of working within higher-level languages for policy
definition: more flexible abstractions, enabling complexity
to be focused on the scheduling decisions.

Experimental Setup: Unless otherwise noted, experi-
ments run on Linux 4.15 with our ghOSt patches applied.
We run microbenchmarks on a 2-socket Intel Xeon Platinum
8173M @ 2GHz, 28 cores per socket, 2 logical cores each.

1. Message Delivery to Local Agent 725 ns
2. Message Delivery to Global Agent 265 ns
3. Local Schedule (1 txn) 888 ns
Remote Schedule (1 txn for 1 CPU)
4. Agent Overhead 668 ns
5. Target CPU Overhead 1064 ns
6. End-to-End Latency 1772 ns
Group Remote Schedule (10 txns for 10 CPUs)
7. Agent Overhead 3964 ns
8. Target CPU Overhead 1821 ns
9. End-to-End Latency 5688 ns
10. Syscall Overhead 72 ns
11. pthread Minimal Context Switch Overhead 410 ns
12. CFS Context Switch Overhead 599 ns

Table 3. ghOSt microbenchmarks. End-to-end latency is not
equal to the sum of agent and target overheads as the two
sides do somework in parallel and the IPI propagates through
the system bus.

Table 3 summarizes the overhead of basic operations that
are unique to ghOSt. We also report the overhead of equiva-
lent thread operations under CFS.

Message delivery overhead (lines 1-2). In the per-CPU
example, delivery to the local agent consists of adding the
message to a queue, context switching to the local agent, and
dequeuing the message. The overhead (725 ns) is dominated
by the context switch (410 ns). In the centralized example,
delivery to the global agent (265 ns) consists of adding the
message to the queue and dequeuing the message within the
global agent, which is always spinning.

Local scheduling (line 3). In the per-CPU model, this is
the overhead of committing a transaction and performing
a context switch on the local CPU, until the target thread
is running. The overhead (888 ns) is slightly higher than
CFS context switch overhead (599 ns) due to the transaction
commit, but still competitive.

Remote scheduling (lines 4-9). In the centralized
scheduling model, the agent-side commits the transaction
and sends an inter-processor interrupt (IPI). The target CPU
handles the IPI and performs the context switch. The agent’s
overhead (668 ns) sets a theoretical maximum throughput
per agent at 109/668 = 1.5M scheduled threads per second.
Grouping 10 transactions for different CPUs improves the
theoretical maximum to 10 ∗ 109/3964 = 2.52M scheduled
threads per second, by amortizing the IPI overhead.
Given these numbers, a single agent can theoretically

schedule roughly 25,200 threads per CPU per second for a
100 CPU server. The agent can keep 100 CPUs busy if threads
are 40`s long. Policy developers should keep this per-agent
scalability limit in mind as they design ghOSt policies. This
limit is improved relatively linearly with more agents.

Global agent scalability (Fig. 5). To show how a global
agent scales, we analyze a simple round-robin policy. The
policy manages all threads in a FIFO runqueue, scheduling
them on CPUs as soon as CPUs become idle. The agent
groups as many transactions as possible per commit. We ran

0 20 40 60 80 100 120
0

1

2

❶

❷

❸

Number of Scheduled CPUs

1
M
ill
io
n
Tx

ns
/S
ec

Haswell
Skylake

Figure 5. The scalability of a global agent.
the experiment on the default microbenchmarks machine,
which uses Skylake processors, as well as a 2-socket machine
with Haswell processors (18 physical cores per socket, two
logical cores each, 2.3 GHz).
The results are shown in Fig. 5. Both lines follow a simi-

lar pattern and we annotate the Skylake line in the figure:
The steep ramp-up ❶ shows that the global agent schedules
more transactions per second as more CPUs are available
to schedule work on. The drop ❷ occurs when we co-locate
the global agent on the same physical core as a ghOSt thread
that executes work. The hyperthreads are contending for
resources in the physical core’s pipeline, which degrades
the global agent’s performance. Finally, the degradation ❸
comes from the global agent scheduling CPUs in the remote
socket. Scheduling these CPUs requires memory operations
and sending interrupts across NUMA sockets which incur
higher overheads.

4.2 Comparison to Custom Centralized Schedulers
We now compare ghOSt, a generic scheduling framework, to
a highly specialized scheduling system from recent academic
research that uses centralized policies to schedule demanding
`s-scale workloads. The experiments run on a single socket
from a 2-socket Intel Xeon CPU E5-2658 (12 cores per socket,
24 logical cores per socket, 2.2 GHz).

Systems under comparison.We compared three imple-
mentations of the scheduling approach in Shinjuku [25], all
serving a RocksDB workload [70]. We use one physical core
for load generation with all systems. The Shinjuku system
runs on Linux 4.4 as its Dune [35] driver fails to compile
for newer versions. The other systems under comparison
(ghOSt-Shinjuku and CFS-Shinjuku) run on Linux 4.15 with
our ghOSt patches applied.

(1)We used the original Shinjuku system [25]. It uses 20
spinning worker threads pinned to 20 different hyperthreads
and a spinning dispatcher thread, running on a dedicated
physical core. The spinning threads prevent any other thread
from running on their CPUs (Fig. 6c). The dispatcher man-
ages arriving requests in a FIFO and assigns them to worker
threads. Each request runs up to a limited runtime, before it
is preempted and added to the back of the FIFO.

(2) We implemented the Shinjuku scheduling policy in
ghOSt using the centralized model in 710 lines of userspace

0 100 200 3000

500

1,000

1,500

RocksDB Throughput (1K req/s)

99
%
La
te
nc
y
(`
s) Shinjuku

ghOSt-Shinjuku
CFS-Shinjuku

(a) Tail latency for dispersive loads.

0 100 200 3000

500

1,000

1,500

RocksDB Throughput (1K req/s)

99
%
La
te
nc
y
(`
s)

(b) RocksDB co-located with a batch app.

0 100 200 3000
0.2
0.4
0.6
0.8
1

RocksDB Throughput (1K req/s)

Ba
tc
h
CP

U
Sh

ar
e

(c) CPU share of the batch app.
Figure 6. ghOSt implements modern `s-scale preemptive policies and shares CPU resources without harming tail latency.

code. The ghOSt-Shinjuku global agent starts out on its
own physical core but is free to move (§3.3). We maintain
a pool of 200 worker threads that the load generator as-
signs requests to. The global agent maintains a FIFO queue
of runnable worker threads and schedules them to the re-
maining 20 CPUs. Note that ghOSt allows other loads in the
system to use any idling CPUs, shown in Fig. 6b-c.

(3) For reference, we also implemented a non-preemptive
version of Shinjuku that runs on Linux CFS. This CFS-
Shinjuku version does not benefit from Shinjuku’s special-
ized data plane features, such as the use of virtualization
features and posted interrupts for preemption.

Single Workload Comparison. As in the Shinjuku [25]
paper, we generate a workload in which each request in-
cludes a GET query to an in-memory RocksDB key-value
store [70] (about 6 `s) and performs a small amount of pro-
cessing. We assigned the following processing times: 99.5%
of requests - 4 `s, 0.5% of requests - 10ms. The allotted time-
slice per worker thread, before forcing a preemption and
returning back to the FIFO, is 30 `s. CFS-Shinjuku is non-
preemptive, so all requests run to completion.
Our results are depicted in Fig. 6a. ghOSt is competitive

with Shinjuku for `s-scale tail workloads, even though its
Shinjuku policy is implemented in 82% fewer lines of code
than the custom Shinjuku data plane system. ghOSt has
slightly higher tail latencies than Shinjuku at high loads and
is within 5% of Shinjuku’s saturation throughput. The differ-
ence reflects the extra overhead ghOSt has for scheduling a
thread for every request, whereas Shinjuku passes request
descriptors between spinning threads. CFS-Shinjuku satu-
rates about 30% sooner than the other two systems due to
its lack of preemption.

Multiple Workloads Comparison. In a production sce-
nario, when RocksDB load is low, it is appealing to use the
idling compute resources to serve low-priority batch applica-
tions [1, 21, 71] or run serverless functions. The original Shin-
juku system schedules requests and cannotmanage any other
native threads. Fig. 6c shows that when we co-locate a batch
application with a RocksDB workload managed by Shinjuku,
the batch application cannot get any CPU resources even
when the RockDB load is low.

To enable the safe co-location of low-latency and batch
workloads, one might consider using a centralized sched-
uling system that is thread-oriented, such as Shenango [1].

Shenango’s centralized scheduler monitors the load of a net-
work application, and when the app is under light load, the
scheduler gives the spare CPU cycles to a batch app. However,
Shenango is not suitable for requests with varying execution
times, and so the RocksDB workload would have far worse
tail latencies than with Shinjuku.
We extended our ghOSt-Shinjuku policy to implement

Shenango-style scheduling with merely 17 more lines of
code, bringing the policy to 727 lines in total (Shinjuku +
Shenango Policy in Table 2). The policy monitors the load
to RocksDB and gives spare cycles to the batch app. Fig. 6b
shows that our modified ghOSt policy produces the same tail
latencies as our original ghOSt policy. The major benefit is
shown in Fig. 6c. While keeping the RocksDB tail latencies
intact, ghOSt now shares spare CPU cycles with the batch
app. The amount of compute the batch app can utilize is
similar to what it can achieve under CFS when running with
a nice value of 19, while RocksDB has a nice value of -20. A
few lines of code in ghOSt combined the best of Shinjuku [25]
and Shenango [1], without any application changes.

4.3 Google Snap
We now evaluate ghOSt as a replacement for our soft real-
time kernel scheduler MicroQuanta [2] which manages the
worker threads for Snap [2], our userspace packet-processing
framework.
Similar to DPDK [72], Snap maintains polling (worker)

threads that are responsible for interactions with NIC hard-
ware and for running custom networking and security pro-
tocols on behalf of important services. Snap may decide to
spawn/join worker threads as networking load changes.

Howareworker threads scheduled today? Snapmain-
tains at least one worker thread constantly polling. As bursts
of networking load arrive, Snap may wake up and subse-
quently put to sleep additional worker threads. These fre-
quent wakeups/sleeps require swift scheduler intervention
to avoid added latency. Trying to guarantee low latency via
existing real-time schedulers, such as SCHED_FIFO, destabi-
lizes the system, as it may starve other applications on the
same machine. Therefore, we deploy in production Micro-
Quanta, a custom, soft real-time scheduler that guarantees
that for any period, e.g., 1ms, at most a quanta of time, e.g.,
0.9ms, is given to each packet processing worker. This policy
ensures worker threads receive runtime while not starving

other threads. However, it also leads to networking blackouts
of up to 0.1ms.

Experimental setup. We used two machines, each with
two Intel Xeon Platinum 8173M processors (28 physical cores
per socket, 2 logical cores each, 2GHz), 383 GB of DRAM
and a 100Gbps NIC and a matching switch. Our tests used a
single socket, i.e., 56 logical CPUs per machine.

The test workload. Our test workload is comprised of
six client threads, sending 10k messages/second to six server
threads on the other machine and receiving a symmetrically
sized reply. The test is designed to stress thread scheduling
and not the NIC. One client thread sends 64-byte messages,
which represents a worst-case scenario rather than a realistic
load. Each of the other five client threads sends 64kB mes-
sages. The total bandwidth achieved in all cases is 51.86Gbps.
In all experiments, the client and server threads are sched-
uled by Linux CFS. In our ghOSt experiments, the worker
threads are scheduled with ghOSt instead of MicroQuanta.
We run tests in two modes. In the quiet mode, the clien-

t/server threads are the only explicit workload on their ma-
chines. In the loaded mode, the machines are also running
40 additional antagonist threads of a batch workload that
attempt to use idling CPU resources, unused by server or
Snap threads, when network traffic is low.

ghOSt policy.We replace MicroQuanta with the follow-
ing ghOSt policy. The policy manages the worker threads
of Snap and the antagonist threads. It is a simple, yet effec-
tive centralized FIFO policy. The global agent tries to find
an idle CPU to schedule its threads, giving Snap worker
threads strict priority over antagonist threads. In quiet mode
tests, the worker threads are frequently preempted by the
client/server threads and other native threads scheduled by
CFS (e.g., important but periodic daemons). In loaded mode
tests, Snap worker threads will preempt antagonist threads,
but cannot preempt threads managed by CFS. Antagonist
threads only run when there are spare resources from both
CFS threads and Snap. We did not use any dedicated cores.
Tail latency comparison. Fig. 7 compares the round-trip

tail latencies for client requests given the two schedulers in
the machine. We present tail latencies separately for 64B and
64kB messages. For 64B messages, ghOSt performs similar or
10% better than the baseline when we consider up to 99.9th
percentile latency. For 99.99% and above, ghOSt latencies are
up to 1.7× worse. The 64B messages require little compute
for packet processing. Hence, when traffic is bursty with
many 64B messages, ghOSt’s overhead of scheduling events
is noticeable . For 64kB messages, ghOSt performs similarly
to the baseline for up to the 99th percentile latency (within
15% in either direction). For 99.9th percentile and above,
ghOSt leads to tail latencies that are 5% to 30% lower. The
64kB messages require more processing (for copying data)
and therefore lead to fewer scheduling events. The reason
ghOSt performs better than MicroQuanta in some cases is
that it can relocate a worker thread when a CPU becomes

50% 90% 99% 99.9% 99.99% 99.999%
0

1000

2000

3000

M
ic
ro
se
co
nd

s

MicroQ 64B ghOSt 64B MicroQ 64kB ghOSt 64kB

(a) Only networking load (quiet test).

50% 90% 99% 99.9% 99.99% 99.999%

0

10

20

30

M
ill
ise

co
nd

s

(b) With additional load (loaded test).
Figure 7. Google Snap latencies for 64B and 64kB messages.
busy due to a server process thread. MicroQuanta, on the
other hand, has to wait for a blackout period.

These results are very encouraging. A very simple ghOSt
policy performs similarly to a custom kernel scheduler with-
out needing to modify Snap. ghOSt allows rapid experimen-
tation and performance optimization, which is substantially
harder with kernel schedulers. We expect that additional
improvements, such as including scheduling hints from the
worker threads, can further optimize performance.

4.4 Google Search
We now evaluate ghOSt as a replacement for the CFS sched-
uler on machines that serve Google Search queries [73].

The test workload. The benchmark includes a query
generator running on a separate machine (without ghOSt),
sending three different query types, denoted A, B, and C.
Query type A is a CPU and memory-intensive query serviced
by worker threads which are woken up as needed. Query
type B needs little computation but does require access to the
SSD, and is serviced by a collection of short-lived workers,
also woken up as needed. Query type C is a CPU-intensive
load serviced by long-living worker threads.
At packet ingress, all queries are first processed by one

of several server threads, which create sub-queries to be
processed by the worker threads referenced above. Some sub-
queries must be processed by specific worker threads tied to
a NUMA node to take advantage of data locality. Since this
workload is memory and CPU bound, queries are serviced
much faster if they are handled by worker threads running
on the same socket where the data they access reside.

Experimental setup. The machines we evaluated ghOSt
on have two AMD Zen Rome processors with 256 CPUs in
total (2 sockets, 64 physical cores per socket, 2 logical cores

each). AMD’s architecture brings new challenges because
it clusters groups of 4 physical cores (8 logical cores) into
CCXs (CPU Core Complexes), where each CCX has its own
L3 cache.

ghOSt policy. We implement a policy using ghOSt’s cen-
tralized model with a single global agent to schedule all 256
CPUs. At startup, the global agent first generates a model
of the system topology, using sysfs. The global agent then
uses the topology information to schedule threads based on
their NUMA preferences and, when possible, prefers running
the threads on a CPU belonging to the last CCX the threads
ran on. The global agent maintains a min-heap ordered by
thread runtime, where threads with the least elapsed run-
time are picked for execution before others. Threads run to
completion or until preempted by a CFS thread.
The NUMA- and CCX-aware heuristics for picking the

next idle CPU are only 57 lines of code due to ghOSt’s flexible
transaction API and use of the C++ standard library. When
a new worker thread is spawned, its cpumask is set (via
sched_setaffinity()) to the set of CPUs in the socket
where its query data is located. This cpumask is included
as part of the THREAD_CREATED message that is sent to the
global agent. When the ghOSt global agent wants to run
the next thread at the front of its runqueue, it intersects the
thread’s cpumaskwith the set of idle CPUs. If the intersection
is empty, the agent skips the thread and schedules the next
thread in the runqueue, revisiting the skipped thread in the
next iteration of its scheduling loop.
Search query performance improves when each thread

runs on CPUs with warmed-up L1, L2, or L3 caches. For each
thread-scheduling event, our ghOSt policy assigns the thread
to an idle CPU target that is closest to where the thread last
ran. The policy first searches for available CPUs within the
same L1 and L2 cache domain of the CPU where the thread
last ran. If no idle CPUs are found, the policy extends the
search to the CCX (L3 cache) domain. If this fails, too, then
it does a fan-out search for the nearest neighbor of the CCX
where the thread last ran, to avoid expensive thread migra-
tion costs due to high inter-CCX communication latencies.

CFS vs. ghOSt. Fig. 8 compares normalized query latency
and throughput for the search benchmark using CFS and the
ghOSt policy over a period of 60 seconds. Fig. 8a-c shows
that ghOSt offers comparable throughput to CFS. Both CFS
and ghOSt consider NUMA socket and CCX placement. The
NUMA and CCX optimizations were critical in achieving
parity with CFS as they delivered 27% and 10% through-
put improvements, respectively. Iteratively optimizing for
NUMA and CCX placement in a short ghOSt policy is much
easier than experimenting with changes in the kernel CFS
code. Every modification to the ghOSt agent requires merely
restarting the agent’s process, whereas any modification to
CFS would mandate a kernel installation and a reboot.

Tail Latency. Fig. 8d-f shows that ghOSt leads to about
40-45% reduction in tail latency for query types A and B,

compared to CFS, and comparable tail latency for query type
C. Prior to socket- and CCX-aware optimizations, the ghOSt
policy led to nearly 2x worse latency for query type A and
was on par with CFS for query type B and C (i.e., within 10%).
Query type A is memory-bound and benefited the most from
topology optimizations. Query type B accesses both memory
and SSD, while query type C is mostly compute-bound. For
B and C, the ghOSt policy had an advantage to begin with
as the global agent spins and reacts quickly to changes in
capacity in the whole system, rebalancing threads across
CPUs on the order of microseconds. CFS on the other hand
only rebalances threads across CPUs at periodic intervals on
the order of milliseconds, harming query tail latencies.
We can improve query C’s latency on ghOSt by further

refining our policy. The workload assigns nice values to
threads to express relative priority ordering to CFS, which
is important for ensuring that worker threads run with
higher priority than low-priority background threads (e.g.,
for garbage collection). CFS makes more optimal decisions
by using these nice values, and initial experiments show
that incorporating them into ghOSt’s policy will allow ghOSt
to beat CFS for query C’s tail latency.

Our experience with rapid experimentation. ghOSt
is a viable solution for our production fleet, capable of sched-
uling for large machines and realistic workloads, while en-
abling rapid development and roll-out of scheduling policies.

When developing a kernel scheduler, the write-test-write
cycle includes (a) compiling a kernel (up to 15 minutes), (b)
deploying the kernel (10-20 minutes), and (c) running the
test (1 hour due to database initialization following a reboot).
As a result, the enthusiastic kernel developer experiments
with 5 variants per day. With ghOSt, compiling, deploying
and launching the new agent is comfortably done within one
minute. In fact, due to ghOSt’s ability to upgrade without a
reboot, the test continues to run uninterrupted. This also has
an important secondary effect, as the scale and complexity
of this test can contribute non-trivial run-to-run variance
across a reboot, confounding optimization development.
This ease of experimentation allowed us to experiment

with bespoke optimizations, which would be extremely diffi-
cult to discover otherwise. For example, due to high variance
in intra-CCX and inter-CCX latencies in the Rome archi-
tecture, we found that if a thread’s preferred CCX cluster
is unavailable, it is more efficient to temporarily keep the
thread pending for 100 `s rather than migrate it to another
CCX immediately.

4.5 Protecting VMs from L1TF/MDS Attacks
We now evaluate a ghOSt policy protecting virtual machines
from cross-hyperthread speculative execution attacks, such
as L1TF and MDS [27–32]. In these attacks, a malicious VM
exploits microarchitectural flaws to steal data from a differ-
ent VM running on a sibling hyperthread. The attacks are
mitigated by ensuring every physical core only runs virtual

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

Q
PS

CFS
ghOSt

(a) Query A throughput

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

Q
PS

(b) Query B throughput

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

Q
PS

(c) Query C throughput

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

99
%
La
te
nc
y

(d) Query A 99% tail latency

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

99
%
La
te
nc
y

(e) Query B 99% tail latency

0 20 40 600
0.2
0.4
0.6
0.8
1

Time (s)

N
or
m
al
iz
ed

99
%
La
te
nc
y

(f) Query C 99% tail latency
Figure 8. Google Search benchmark results with CFS and ghOSt scheduling.

CPUs (vCPUs) from the same VM. Microarchitectural buffers
are flushed when a new VM is scheduled on a physical core.

Mitigating cross-hyperthread attacks requires scheduling
physical cores, with two logical CPUs each. Implementing
core scheduling in a per-CPU model is challenging since
the scheduler code can only run threads on the CPU it is
currently executing on. In contrast, a ghOSt agent can easily
schedule an entire core by performing a synchronized group
commit for each physical core, i.e., issuing commits for both
CPUs of a core which must either all succeed or all fail.
Our per-core scheduling model is illustrated in Fig. 9. In

every core, both sibling CPUs post messages to the same
queue. At any time, only a single agent is active on a given
physical core. The CPU that generates the message wakes
up its corresponding agent to be the active agent; the other
agent becomes inactive if necessary. The active agent makes
a scheduling decision for both CPUs and commits a group
transaction in a way such that there are no pending messages
in the queue, as explained in §3.2. In this per-physical-core
scheduling model, the ghOSt policy ensures the threads run-
ning on the physical core belong to the same VM. The VM’s
threads may occupy (a) both siblings or (b) only one sibling
while the other sibling runs an idle thread.

Secure VM Core Scheduling Policy. We implement a
VM-scheduling policy similar to Tableau [23] in both the
kernel and in ghOSt. We designed this policy to ensure for-
ward progress, bound tail latency, and provide good average
latency among all VMs. The policy ensures the former two
by scheduling each runnable VM thread for c units of time
every period p. Specifically, we use a partitioned EDF scheme
wherein each physical core dedicates guaranteed time for
each thread to run, bounding tail latency. Any excess time
is shared fairly among runnable threads, improving average
latency. The runqueues span a single NUMA node; when a
physical core goes idle and looks for a new thread to run, it

prefers to select a thread in its NUMA-local runqueue. How-
ever, under high system load the policy allows spilling across
runqueues, providing NUMA preference without the hard
boundary imposed by a CPU affinity mask.

Evaluation. The experimental setup is identical to §4.3.
We scheduled 32 vCPUs on 25 physical cores with 50 log-
ical CPUs. We ran the bwaves benchmark from SPECCPU
2006, with three scheduling policies: 1) CFS, providing no
security against speculative execution attacks; 2) In-kernel
secure VM core scheduling; and 3) ghOSt secure VM core
scheduling. The results are depicted in Table 4. CFS provides
better overall performance, but no security. The ghOSt policy
mitigates cross-hyperthread attacks and performs similar to
the in-kernel version of core scheduling, even in light of the
additional context switching overheads in ghOSt.
5 Future Work
Accelerating scheduling with BPF. Accelerating ghOSt
by delegating some of the agent responsibilities to synchro-
nous BPF callbacks is an open research area. The global agent
scheduling loop in §4.4 takes 30 `s, creating potential sched-
uling gaps. Indeed, some of the threads in our system run
for only 5-30 `s before they block, leaving CPUs idle during
these gaps. We can mitigate these scheduling gaps using an
integrated BPF program, described in §3.2.
The BPF program communicates with userspace via

sharedmemorywith several multi-producer, multi-consumer
ring buffers. The agent inserts runnable threads into the
buffers and BPF tries to run them. The agent may revoke a
thread before BPF can schedule the thread. For example, the
global agent can use one ring buffer per NUMA node; the
global agent can then track each thread’s preferred NUMA
node and load-balance the threads between the two rings.

Tick-less scheduling. When ghOSt is in centralized
mode, timer ticks can be disabled across CPUs to avoid ex-
pensive VM-exits in VM workloads. In a classic per-CPU

Scheduling Policy bwaves Rate Total Time
CFS (no security) 489 888 seconds
In-kernel Core Scheduling 464 937 seconds
ghOSt Core Scheduling 468 929 seconds

Table 4. Secure VM Core Scheduling performance. SPEC-
CPU 2006 bwaves, scheduling 32 vCPUs on 50 real/logical
CPUs. Rate - higher is better. Time - lower is better.
scheduler, the ticks trigger the scheduler every millisecond
to ensure round-robin preemption across all VMs. Unfortu-
nately, these ticks cause a VM-exit to host kernel context.

Since the global agent is continuously spinning and mak-
ing scheduling decisions, there is no need for these ticks.
Eliminating these ticks across all CPUs will substantially
reduce guest jitter. This type of optimization is not pos-
sible with CFS. The closest option in CFS is to enable
CONFIG_NO_HZ_FULL, but that will only disable ticks when
there is no more than one runnable thread on a given CPU,
which is typically not the case under high utilization.

6 Related Work
We briefly discuss additional prior work related to ghOSt.

Scheduler Activations and user-level threading.
Scheduler Activations [74] provides an API for an individual
application to coordinate the scheduling of CPUs assigned to
it by the kernel. In contrast to ghOSt, Scheduler Activations
allows an application to react to the assignment or removal
of a CPU, but it does not allow the assignment of CPUs to ap-
plications. One may use Activations to synchronize an appli-
cation with ghOSt scheduling decisions. Similarly, userspace
thread libraries and schedulers [13, 22, 48, 52–57, 59, 60, 75]
multiplex userspace contexts on top of kernel threads but do
not control when or where kernel threads run.

SmartNIC scheduling. Recent work explores the right
policies and mechanisms to offload scheduling and appli-
cations from the host to a SmartNIC [19, 76–78]. ghOSt’s
shared-memory queue and transaction APIs were designed
to work seamlessly with new coherent interconnect tech-
nologies such as CXL [79], allowing ghOSt to be offloaded
in part or in full to a SmartNIC.

Return of microkernels. An emerging trend is offload-
ing kernel components to userspace, similar to microker-
nels [80]. DPDK [72], IX [34], and Snap [2] offload network
drivers and stacks to userspace. SPDK [81], ReFlex [82],
FUSE [83], and DashFS [63] offload storage and file system
operations. Linux Userspace I/O (UIO) [84] facilitates offload
of kernel drivers. A new CPU design has even been proposed
to accelerate microkernels [85]. ghOSt continues this trend.
Prior work also suggested moving the scheduler to

userspace. Stoess developed a hierarchical, user-level sched-
uler for the L4 microkernel [86]. However, unlike ghOSt,
Stoess requires modifying applications to implement the
custom scheduling policies.

CPU Inheritance Scheduling. Ford and Susarla’s CPU
Inheritance Scheduling [87] is a user-level scheduling system

CPU 0

0

CPU N+1

Agent
0

CPU N

N/2

CPU 1

Inactive
Agent N

Inactive
Agent 1

Agent
N+1

Physical core 0 Physical core N/2

Figure 9. ghOSt per-core scheduling. Each couple of sibling-
CPUs shares a single message queue. For each core, only a
single agent is active at a time.

where scheduling is done by threads donating their runtime.
The donation model is less efficient and less expressive than
ghOSt’s transactions. Each CPU’s root scheduler would do-
nate its runtime to another thread. That thread could also
be a scheduler, allowing for a hierarchy of schedulers, or
an application thread — elegantly solving priority inversion.
These schedulers, like ghOSt agents, receivedmessages about
thread and system events. The system’s dispatcher, analo-
gous to ghOSt kernel code, handled mechanism: executing
donations and sending messages. A donation is akin to a
ghOSt transaction to run the local CPU, but it cannot sched-
ule remote CPUs quickly. To do so, it must wake a scheduler
on the remote CPU and have it donate. Further, unlike ghOSt,
each scheduler can only schedule a single CPU at a time.

7 Conclusion
We presented ghOSt, a new platform for evaluating and im-
plementing thread scheduling policies for the modern data
center. ghOSt transforms scheduler development from the
realm of monolithic kernel implementations to a more flexi-
ble userspace setting, allowing a wide range of programming
languages and libraries to be applied. While intuitively, mov-
ing scheduling decisions to userspace might suggest exces-
sive coordination overhead, we haveminimized synchronous
costs in our APIs and our characterization shows most opera-
tions to be circa `s.What previously required extensive effort
to optimize and deploy can now be often realized in less than
a thousand lines of code. ghOSt allowed us to quickly develop
policies for our production software — rapidly testing and
iterating — leading to competitive performance compared to
the status quo schedulers. We open-source ghOSt to serve
as the basis of future lines of research for the new era of
user-driven resource management.

Acknowledgments
We thank Eric Brewer, David Culler, Hank Levy, Amin Vah-
dat, Kostis Kaffes, Adam Belay, Josh Fried, David Mazières,
our shepherd Irene Zhang, Google Systems Infrastructure,
Stanford Platform Lab, and the anonymous SOSP reviewers
for their helpful feedback. Christos Kozyrakis was supported
by Stanford Platform Lab.

References
[1] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Association.

[2] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Mike Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Mike Ryan,
Erik Rubow, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang,
and Amin Vahdat. Snap: a microkernel approach to host networking.
In In ACM SIGOPS 27th Symposium on Operating Systems Principles,
New York, NY, USA, 2019.

[3] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. Elastic rss: Co-scheduling packets and cores using pro-
grammable nics. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, APNet ’19, page 71–77, New York, NY, USA, 2019.
Association for Computing Machinery.

[4] Amy Ousterhout, Adam Belay, and Irene Zhang. Just in time deliv-
ery: Leveraging operating systems knowledge for better datacenter
congestion control. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), Renton, WA, July 2019. USENIX Association.

[5] Esmail Asyabi, Azer Bestavros, Renato Mancuso, Richard West, and
Erfan Sharafzadeh. Akita: A cpu scheduler for virtualized clouds, 2020.

[6] Esmail Asyabi, Azer Bestavros, Erfan Sharafzadeh, and Timothy Zhu.
Peafowl: In-application cpu scheduling to reduce power consumption
of in-memory key-value stores. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 150–164, New York, NY,
USA, 2020. Association for Computing Machinery.

[7] SCHED(7) Linux Programmer’s Manual, September 2020.
[8] Weiwei Jia, Jianchen Shan, Tsz On Li, Xiaowei Shang, Heming Cui, and

Xiaoning Ding. vsmt-io: Improving i/o performance and efficiency on
SMT processors in virtualized clouds. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 449–463. USENIX Association, July
2020.

[9] Tim Harris, Martin Maas, and Virendra J. Marathe. Callisto: Co-
scheduling parallel runtime systems. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14, New York, NY,
USA, 2014. Association for Computing Machinery.

[10] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 325–341, New York, NY, USA, 2017. Association for Computing
Machinery.

[11] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and Christos
Kozyrakis. Leveraging application classes to save power in highly-
utilized data centers. In Proceedings of the 11th ACM Symposium on
Cloud Computing, SoCC ’20, page 134–149, New York, NY, USA, 2020.
Association for Computing Machinery.

[12] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. The ix operating
system: Combining low latency, high throughput, and efficiency in a
protected dataplane. ACM Trans. Comput. Syst., 34(4), December 2016.

[13] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-aware thread management. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 145–160, Carlsbad, CA, October 2018. USENIX Association.

[14] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A holistic approach to fast in-memory key-value storage.
In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 429–444, Seattle, WA, April 2014. USENIX
Association.

[15] Diego Didona and Willy Zwaenepoel. Size-aware sharding for im-
proving tail latencies in in-memory key-value stores. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), pages 79–94, Boston, MA, February 2019. USENIX Association.

[16] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Central-
ized core-granular scheduling for serverless functions. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC ’19, page 158–164,
New York, NY, USA, 2019. Association for Computing Machinery.

[17] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
Ion Stoica, and Xin Jin. Racksched: A microsecond-scale scheduler for
rack-scale computers. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 1225–1240. USENIX
Association, November 2020.

[18] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2p2: Making rpcs first-class datacenter citizens. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 863–880,
Renton, WA, July 2019. USENIX Association.

[19] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. Mind the gap: A case for informed request scheduling at the
nic. In Proceedings of the 18th ACMWorkshop on Hot Topics in Networks,
HotNets ’19, page 60–68, New York, NY, USA, 2019. Association for
Computing Machinery.

[20] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 561–577, Carlsbad,
CA, October 2018. USENIX Association.

[21] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297. USENIX Association, November 2020.

[22] Barret Rhoden, Kevin Klues, David Zhu, and Eric Brewer. Improving
per-node efficiency in the datacenter with new os abstractions. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC
’11, New York, NY, USA, 2011. Association for Computing Machinery.

[23] Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg. Tableau:
A high-throughput and predictable vm scheduler for high-density
workloads. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[24] Performance-driven dynamic resource management in e2 vms.
https://cloud.google.com/blog/products/compute/understanding-
dynamic-resource-management-in-e2-vms. Last accessed: 2020-11-
11.

[25] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for `second-scale tail latency. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages 345–
360, Boston, MA, February 2019. USENIX Association.

[26] Amirhossein Mirhosseini, Brendan L. West, Geoffrey W. Blake, and
Thomas F.Wenisch. Q-zilla: A scheduling framework and core microar-
chitecture for tail-tolerant microservices. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
207–219, 2020.

[27] OfirWeisse, Jo Van Bulck,MarinaMinkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch,
and Yuval Yarom. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. Technical report,
2018. See also USENIX Security paper Foreshadow [28].

[28] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), page 991–1008, Baltimore, MD,

https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms

August 2018. USENIX Association.
[29] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian

Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 753–768, New York, NY, USA, 2019. Association for Computing
Machinery.

[30] Zombieload: Cross privilege-boundary data leakage. https://www.
cyberus-technology.de/posts/2019-05-14-zombieload.html. Last ac-
cessed: 2020-09-02.

[31] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. Ridl: Rogue in-flight data load. In
2019 IEEE Symposium on Security and Privacy (SP), pages 88–105, 2019.

[32] MarinaMinkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van
Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and
Yuval Yarom. Fallout: Reading kernel writes from user space. CoRR,
abs/1905.12701, 2019.

[33] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. The linux scheduler: A decade of
wasted cores. In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, New York, NY, USA, 2016. Association
for Computing Machinery.

[34] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating
system for high throughput and low latency. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14),
pages 49–65, Broomfield, CO, October 2014. USENIX Association.

[35] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. Dune: Safe user-level access to privi-
leged CPU features. In 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 335–348, Hollywood, CA,
October 2012. USENIX Association.

[36] MingzheHao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi.
Mittos: Supporting millisecond tail tolerance with fast rejecting slo-
aware os interface. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 168–183, New York, NY, USA, 2017.
Association for Computing Machinery.

[37] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. Redline: First class support for interactivity in com-
modity operating systems. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, page 73–86,
USA, 2008. USENIX Association.

[38] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A
disseminated, distributed OS for hardware resource disaggregation. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 69–87, Carlsbad, CA, October 2018. USENIX
Association.

[39] big.little - arm. https://www.arm.com/why-arm/technologies/big-little.
Last accessed: 2020-11-27.

[40] Kevin Lepak. The next generation amd enterprise server product
architecture. In Proceedings of the IEEE Annual Symposium on Hot
Chips, August 2017.

[41] Aws nitro system. https://aws.amazon.com/ec2/nitro/. Last accessed:
2020-11-29.

[42] What’s a dpu? https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-
data-processing-unit/. Last accessed: 2020-11-29.

[43] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, and Jonathan Ross. In-datacenter performance analysis
of a tensor processing unit. 2017.

[44] ghOSt kernel code. https://github.com/google/ghost-kernel.
[45] ghOSt userspace code. https://github.com/google/ghost-userspace.
[46] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz

Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2019.

[47] Dario Faggioli, Michael Trimarchi, Fabio Checconi, Marko Bertogna,
and Antonio Mancina. An implementation of the earliest deadline
first algorithm in linux. In Proceedings of the 2009 ACM Symposium
on Applied Computing, SAC ’09, page 1984–1989, New York, NY, USA,
2009. Association for Computing Machinery.

[48] Folly: Facebook open-source library. https://github.com/facebook/
folly. Last accessed: 2020-11-10.

[49] Abseil. https://abseil.io/. Last accessed: 2020-11-29.
[50] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of

Read-Copy-Update Techniques in Operating System Kernels. PhD thesis,
OGI School of Science and Engineering at Oregon Health and Sciences
University, 2004. Available: http://www.rdrop.com/users/paulmck/
RCU/RCUdissertation.2004.07.14e1.pdf [Viewed October 15, 2004].

[51] Dick Sites. Data center computers: Modern challenges in cpu design.
https://www.youtube.com/watch?v=QBu2Ae8-8LM. Last accessed:
2020-11-10.

[52] P. Gadepalli, R. Pan, and G. Parmer. Slite: Os support for near zero-
cost, configurable scheduling *. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 160–173, Los
Alamitos, CA, USA, apr 2020. IEEE Computer Society.

[53] Martin Karsten and Saman Barghi. User-level threading: Have your
cake and eat it too. Proc. ACM Meas. Anal. Comput. Syst., 4(1), May
2020.

[54] The go programming language. https://golang.org/. Last accessed:
2020-11-10.

[55] Boost fiber. https://www.boost.org/doc/libs/1_68_0/libs/fiber/doc/
html/fiber/overview.html. Last accessed: 2020-11-10.

[56] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric
Brewer. Capriccio: Scalable threads for internet services. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, page 268–281, New York, NY, USA, 2003. Association for
Computing Machinery.

[57] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient
multithreaded runtime system. In Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, page 207–216, New York, NY, USA, 1995. Association for
Computing Machinery.

[58] Kevin Alan Klues. OS and Runtime Support for Efficiently Managing
Cores in Parallel Applications. PhD thesis, University of California,
Berkeley, USA, 2015.

[59] Lithe. http://lithe.eecs.berkeley.edu/. Last accessed: 2020-11-10.
[60] Seastar. https://github.com/scylladb/seastar. Last accessed: 2020-11-

10.
[61] A thorough introduction to ebpf. https://lwn.net/Articles/740157/. Last

accessed: 2020-12-10.
[62] Yu JianWu, HongyiWang, Yuhong Zhong, Asaf Cidon, Ryan Stutsman,

Amy Tai, and Junfeng Yang. Bpf for storage: An exokernel-inspired

https://www.cyberus-technology.de/posts/2019-05-14-zombieload.html
https://www.cyberus-technology.de/posts/2019-05-14-zombieload.html
https://www.arm.com/why-arm/technologies/big-little
https://aws.amazon.com/ec2/nitro/
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://github.com/google/ghost-kernel
https://github.com/google/ghost-userspace
https://github.com/facebook/folly
https://github.com/facebook/folly
https://abseil.io/
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
https://www.youtube.com/watch?v=QBu2Ae8-8LM
https://golang.org/
https://www.boost.org/doc/libs/1_68_0/libs/fiber/doc/html/fiber/overview.html
https://www.boost.org/doc/libs/1_68_0/libs/fiber/doc/html/fiber/overview.html
http://lithe.eecs.berkeley.edu/
https://github.com/scylladb/seastar
https://lwn.net/Articles/740157/

approach. In Proceedings of the 18th ACM Workshop on Hot Topics in
Operating Systems, HotOS ’21. Association for Computing Machinery,
2021.

[63] Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Sudarsun Kannan. File systems as processes. In 11th USENIXWorkshop
on Hot Topics in Storage and File Systems (HotStorage 19), Renton, WA,
July 2019. USENIX Association.

[64] How esxi numa scheduling works. https://docs.vmware.com/en/
VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-
BD4A462D-5CDC-4483-968B-1DCF103C4208.html. Last accessed:
2020-11-02.

[65] Bpf ring buffer. https://nakryiko.com/posts/bpf-ringbuf. Last accessed:
2021-04-26.

[66] The rapid growth of io_uring. https://lwn.net/Articles/810414/. Last
accessed: 2021-04-26.

[67] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, page 204–213, New York, NY, USA,
1995. Association for Computing Machinery.

[68] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[69] libbpf. https://github.com/libbpf/libbpf. Last accessed: 2020-08-25.
[70] Rocksdb. https://rocksdb.org. Last accessed: 2020-11-27.
[71] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Christos Kozyrakis. Heracles: improving resource effi-
ciency at scale. In Deborah T. Marr and David H. Albonesi, editors,
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, Portland, OR, USA, June 13-17, 2015, pages 450–462. ACM,
2015.

[72] Data plane development kit. http://www.dpdk.org/. Last accessed:
2019-06-26.

[73] Luiz Andre Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a
planet: The google cluster architecture. IEEE Micro, 23:22–28, 2003.

[74] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler activations: Effective kernel support for
the user-level management of parallelism. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles, SOSP ’91,
page 95–109, New York, NY, USA, 1991. Association for Computing
Machinery.

[75] Upthread. http://akaros.cs.berkeley.edu/parlib/upthread/. Last ac-
cessed: 2020-11-10.

[76] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann,
Simon Peter, Rastislav Bodik, and Thomas Anderson. Floem: A pro-
gramming system for nic-accelerated network applications. In 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18), pages 663–679, Carlsbad, CA, October 2018. USENIX
Association.

[77] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. Offloading distributed applications onto
smartnics using ipipe. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, page 318–333, New York, NY,
USA, 2019. Association for Computing Machinery.

[78] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and
A. Daglis. The nebula rpc-optimized architecture. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pages 199–212, 2020.

[79] Compute Express Link https://docs.wixstatic.com/ugd/0c1418_
d9878707bbb7427786b70c3c91d5fbd1.pdf. Last accessed: 2019-06-26.

[80] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating
system architecture for application-level resource management. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, page 251–266, New York, NY, USA, 1995. Association
for Computing Machinery.

[81] Storage performance development kit. https://spdk.io/. Last accessed:
2020-08-20.

[82] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash ≈ local flash. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, page 345–359, New York, NY, USA,
2017. Association for Computing Machinery.

[83] libfuse. https://github.com/libfuse/libfuse. Last accessed: 2020-08-15.
[84] The userspace i/o howto. https://www.kernel.org/doc/html/v4.14/

driver-api/uio-howto.html. Last accessed: 2021-01-11.
[85] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos

Kozyrakis. A Case against (Most) Context Switches, page 17–25. Asso-
ciation for Computing Machinery, New York, NY, USA, 2021.

[86] Jan Stoess. Towards effective user-controlled scheduling for
microkernel-based systems. ACM SIGOPS Oper. Syst. Rev., 41(4):59–68,
2007.

[87] Bryan Ford and Sai Susarla. CPU inheritance scheduling. In Karin
Petersen and Willy Zwaenepoel, editors, Proceedings of the Second
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, Washington, USA, October 28-31, 1996, pages 91–105.
ACM, 1996.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-BD4A462D-5CDC-4483-968B-1DCF103C4208.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-BD4A462D-5CDC-4483-968B-1DCF103C4208.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-BD4A462D-5CDC-4483-968B-1DCF103C4208.html
https://nakryiko.com/posts/bpf-ringbuf
https://lwn.net/Articles/810414/
https://github.com/libbpf/libbpf
https://rocksdb.org
http://www.dpdk.org/
http://akaros.cs.berkeley.edu/parlib/upthread/
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://spdk.io/
https://github.com/libfuse/libfuse
https://www.kernel.org/doc/html/v4.14/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v4.14/driver-api/uio-howto.html

	Abstract
	1 Introduction
	2 Background & Design Goals
	2.1 Design Goals

	3 Design
	3.1 Kernel-to-Agent Communication
	3.2 Agent-to-Kernel Communication
	3.3 The Centralized Scheduler
	3.4 Fault Isolation and Dynamic Upgrades

	4 Evaluation
	4.1 Analysis of ghOSt Overheads and Scaling
	4.2 Comparison to Custom Centralized Schedulers
	4.3 Google Snap
	4.4 Google Search
	4.5 Protecting VMs from L1TF/MDS Attacks

	5 Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

