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ABSTRACT
Template-based Tolerant Algebraic Side Channel Attacks
(Template-TASCA) were suggested in [20] as a way of re-
ducing the high data complexity of template attacks by cou-
pling them with algebraic side-channel attacks. In contrast
to the maximum-likelihood method used in a standard tem-
plate attack, the template-algebraic attack method uses a
constraint solver to find the optimal state correlated to the
measured side-channel leakage. In this work we present the
first application of the template-algebraic key recovery at-
tack to a publicly available data set (IAIK WS2). We show
how our attack can successfully recover the encryption key
even when the attacker has extremely limited access to the
device under test – only 200 traces in the offline phase and
as little as a single trace in the online phase.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Miscellaneous

General Terms
Hardware side-channel exploits and modeling, analysis of
real attacks and threat evaluation, smart-card security

1. INTRODUCTION
Side-channel attacks are attacks which reveal the secrets

of cryptographic devices by observing their physical prop-
erties[14]. In this report we deal specifically with power
analysis attacks on an AES-128 implementation. In
this setting the secret is the 16-byte AES-128 key, while the
physical property which we observe is the power trace of
the device under test (DUT).

One popular form of side-channel attack is a type of pro-
filing attack called the template attack[8, 22]. Template
attacks operate in two phases – an offline phase and an on-
line phase. In the offline phase, a reference device which
is similar to the DUT but entirely under the control of the
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attacker is profiled and characterized, and a series of tem-
plates is constructed. These attacker first identifies loca-
tions in the power trace (known as interesting points) where
individual sensitive elements of the device state (for exam-
ple the AES key bytes) are manifest in the DUT’s power
consumption. Next, the attacker characterizes the particu-
lar values each such key byte can take, by matching each
potential value to a multivariate Gaussian distribution over
the corresponding set of interesting points. In some cases
each possible value is described by its own template, while
in other cases a set of similar values (such as 8-bit values
sharing the a similar Hamming weight) can be grouped into
the same template. The offline phase thus outputs a series
of template decoders, each of which maps a certain set of
interesting points to a certain set of secret values.

In the online phase, one or more power traces of the DUT
itself are measured, and the template decoders created in the
offline phase are applied to these traces. Next, signal clas-
sification techniques such as maximum-likelihood decoding
are used to determine which of the secret values was the
most likely to have caused these particular power traces to
be emitted by the DUT.

Stated formally, the online phase of the template attack
receives as input a trace x and outputs for each possible
candidate key ki and each possible value (or set of values)
vj the probability that the DUT would output the trace x,
conditioned on the key ki having the value vj :

Pr (x|ki = vj) (1)

By evaluating this probability for all possible values of vj
and applying Bayesian inversion, the attacker can discover
the value most likely to cause the device to emit this trace:

ki = arg max
vj

Pr (ki = vj |x) =

arg max
vj

(Pr (x|ki = vj) · Pr (ki = vj)) (2)

After each key byte ki is extracted in this method, the
most likely sub-keys (or some subset of less likely keys, as
shown in [26]) are combined to form the complete key k.

One of the main drawbacks of template attacks is their
high data complexity. Practical attacks such as [21] require
millions of traces, both for the offline profiling phase and for
the online attack phase1. It is thus interesting to search for
1If the attacker knows in advance that the leakage model
is the Hamming weight model, fewer traces can be used in
the preprocessing step; However, this modified attack does
not return the complete secret key but only its vector of
Hamming weights.



ways of carrying out template attacks using less traces.

1.1 Motivation
Let k be an encryption key and p be a plaintext. Then the

vector s1···m = State (k, p) is a description of the internal
state progression experienced by the DUT as it encrypts
the plaintext p under the key k. Similarly to the encryption
key, the encryption state is also divided into elements such as
bytes. In contrast to the key bytes, which are usually chosen
independently at random during the key generation process,
each byte of the state is typically dependent on other bytes,
and not all combinations of state bytes correspond to the
transcript of a valid encryption. For example, fixing the
values of the encryption key and the plaintext completely
determines the values of the entire encryption state.

It is well known that the side-channel trace contains in-
formation not only about the key bits themselves, but also
about the state bits. This property is used to great effect
by correlation power analysis attacks [7] and similar side-
channel attacks. The objective of the template-algebraic
method is to construct a template attack that chooses the
most likely state instead of the most likely key. Since more
information is extracted from the trace, and since this state
information contains some internal redundancy, it is reason-
able to assume that such an attack would be able to tolerate
a lower level of accuracy in the recovery of individual state
elements. Reducing the accuracy requirement for the indi-
vidual templates in turn translates to reduced data demands
both for the offline and the online phase of the attack.

A minimal modification to the offline phase of the tem-
plate attack allows the creation of templates for the entire
state as well as for the key. Similarly, the online phase of
a template-algebraic attack begins just like a standard tem-
plate attack, by recovering the probability that the trace x
was caused by each individual state byte si receiving a value
vj . Note that the state is dependent on both the plaintext
and the key.

Pr (x|si = vj , p) (3)

Using Bayesian inversion, the attacker can then transform
these probabilities into a vector of aposteriori probabilities
Pr (si = vj |x, p). However, in contrast to standard template
attacks, it is not simply possible to choose the most value
for each state byte and combine them, since not all full state
vectors correspond to valid encryptions. The attacker’s goal
is thus to search among all state vectors which correspond to
valid encryptions, and to select among these valid states
a state s∗ which maximizes the aposteriori probabil-
ity Pr (si = s∗i |x, p) for all state bytes simultaneously. More
formally, the objective of the online attack phase can now
be stated as follows:

k = arg max
k∗

∏
i=1···m

Pr (si = s∗i |x, p) , s.t. s∗ = State (k∗, p)

(4)
The added restriction on the validity of the state vector,

and the fact that k does not explicitly appear in the proba-
bility calculation, means that standard maximum-likelihood
methods cannot be directly applied to this problem.

1.2 Contributions
In our work we present the first practical evaluation of

the template-algebraic side-channel attack, a profiling at-

tack which can find the optimal key based on the aposteri-
ori probabilities of the entire state of the DUT, and not just
those of the individual key bytes. We describe the template-
algebraic approach and show how it can be used to effectively
recover the secret key with an extremely reduced data com-
plexity, both at the offline and online phases, when compared
to standard template attacks. We evaluate the attack on a
public data set of real-world power traces, and show how
it can recover an AES secret key with a very high success
rate, even when the offline profiling phase is provided with
less than 200 traces and the online attack phase is provided
with one or two traces. The median running time of our
attack is 600 seconds for a two-trace scenario, and 25 hours
for a single-trace scenario.

Document Structure The following section briefly de-
scribes the structure of the template-algebraic attack. Sec-
tion 3 describes the experiment setup and leakage model.
Section 4 discusses how to construct decoders for individual
state bytes with a limited data set. Section 5 contains the
solver-specific description of how algebraic methods trans-
form the template decoder’s output into a full key recovery
attack. In Section 6 we present our results, and conclude
with some discussion.

2. THE TEMPLATE-ALGEBRAIC ATTACK
The template-algebraic side channel attack [20] is a profil-

ing attack which uses a constraint solver to find the optimal
key given the aposteriori probabilities of the entire state of
the DUT, and not just those of the individual key bytes.

A central component of the attack is a constraint solver,
and more specifically a pseudo-Boolean optimizer, described
in more detail in [1]. In contrast to traditional constraint
solvers such as SAT solvers, the pseudo-Boolean optimizer
also receives, along with the logical constraints which must
be satisfied, an additional goal function which must be
minimized. A pseudo-Boolean optimizer is generally slower
and less efficient than a single-purpose SAT solver.

The Template-TASCA attack follows these steps:

1. In a first offline phase, the DUT is analyzed in order
to identify the position of the leaking operations in
the traces, for instance by using classical side-channel
attacks like CPA [7] or template attacks [8]. In con-
trast to standard template attacks, which only profile
the key bytes, this attack creates templates for many
internal states of the DUT.

2. Next, in a second offline phase, the DUT is profiled
and a decoding process is devised, in order to map be-
tween a single power trace and a vector of leaks. The
output of the decoder in this phase is a full probability
vector for each leak, listing the aposteriori probabil-
ity of the leak having each possible value, conditioned
on the specific trace being received. For example, in
the case of a Hamming weight-based template decoder,
each potential leak will have an associated vector of
9 aposteriori probabilities corresponding to Hamming
weights 0 to 8.

3. After the offline phase, the attacker is provided with
a small number of power traces. The traces are ac-
companied by auxiliary information such as known
plaintext and ciphertext. The decoding process is ap-



plied to the power trace, and a vector of aposteriori
probabilities for each leak is recovered.

4. The leak vector, together with a formal description of
the algorithm implemented in the DUT, is represented
as a system of equations. This equation set also in-
cludes any additional auxiliary information.

5. A constraint solver evaluates the equation set and at-
tempts to find a candidate key which satisfies the en-
cryption algorithm while maximizing the aposteriori
probability of the state elements involved.

6. Optionally, some post-processing can be used in order
to brute force the remaining key candidates provided
by the solver. As shown in [20], the key can be recov-
ered within a few days, even if as many as 5 key bytes
returned by the solver are incorrect.

2.1 Related Work
As stated in [5], a constraint solver is a piece of software

which tries to find an assignment over a set of variables such
that a set of user-defined constraints is satisfied. Constraint
solvers are widely used in the hardware design community
for model checking, FPGA routing and other purposes. The
first attempt to attack a modern cipher (DES[18]) using con-
straint solvers was published in 2000 by Massacci et al. in
[16]. This attack methodology was named Logical Crypt-
analysis or Algebraic Cryptanalysis. In Algebraic Crypt-
analysis attacks, cryptosystems are represented as systems
of equations. A constraint solver is then applied to find the
cryptographic key satisfying these equations. In [23] and
subsequent works Renauld et al. applied SAT solvers to the
problem of side-channel analysis. This new attack method-
ology was named Algebraic Side-Channel Analysis (ASCA).

To carry out an ASCA attack, the attacker recovers a
vector of side-channel leaks (such as Hamming weights
or Hamming distances) from the power trace, then writes
an equation set mapping these leaks to the evolution of
the internal state of the device; finally, a constraint solver
is used to find the secret key satisfying these equations. In
[23] and [24] it was shown that if the side-channel vector is
represented perfectly it is possible to recover the key from
unprotected AES[12] and PRESENT[6] software implemen-
tations with very low data complexity (typically one or two
power traces).

One drawback of the ASCA method is that it requires
perfectly accurate side-channel data. The sensitivity of the
ASCA methodology to noise or decoding errors in the side-
channel leak vector severely limits its practicality. In [19]
a new attack methodology called Tolerant Algebraic Side-
Channel Analysis (TASCA) was presented. This methodol-
ogy allows the algebraic methods of [24] to be used for key
recovery from a very small amount of side-channel informa-
tion, even in the presence of reasonable amounts of mea-
surement noise. Another method of tolerating some noise
was also introduced in [28], and a similar approach was also
discussed in [17]. Finally, in [20], the TASCA method was
adapted to work on outputs from a general template de-
coder. However, only the online phase of attack was mod-
eled, based on simulated probability outputs of a hypotheti-
cal ideal decoder. In contrast, this work provides a complete
evaluation of the attack, starting with actual traces and de-
scribing both the offline and the online phases.

Techniques based on the stochastic approach [25], princi-
pal components analysis [9], machine learning [10] and multi-
variate regression [13] were also shown to reduce the number
of traces required for preprocessing. Another related work
in the field is [2].

3. THE LEAK MODEL
Our goal in this phase is to generate a decoder that is

given a single power trace x and can produce leakage infor-
mation about the intermediate states. The leakage informa-
tion consists of the aposteriori probabilities Pr (si|x). In the
profiling phase we learn the power consumption behavior of
the DUT. To this end we assume we have the exact same
model of the DUT, and that we are able to run it many times
with known plaintext and keys. Later, in the online phase,
we use the template to extract the aposteriori probabilities
for the intermediate state bytes from the DUT.

3.1 Experiment Setup
The attacks were carried out on the IAIK WS2 data set,

provided online2 as part of the supplementary data to [14].
The data set consists of 200 power traces of the first round of
AES, each with the same secret key but with different plain-
texts. The device under test was an Atmel 8052-compatible
micro-controller[11] running the standard 8-bit implementa-
tion of AES. A standard correlation power analysis[7] attack
on these traces recovers the secret key using approximately
50 traces in the online phase.

The WS2 data set traces implement no countermeasures
and are fully-aligned. Thus, at each point in time all 200
traces are completely synchronized and are performing ex-
actly the same instruction.

3.2 Leaks of Information
As stated in [14], micro-controller implementations of AES

are expected to leak the Hamming weights of the state bytes
they process. Thus, we designed our the decoder to out-
put the aposteriori probabilities for the 9 possible Hamming
weights of each byte.

As described in [14], we assumed that the Hamming weight
leakage of information in the power consumption is of the
form Power = Power (HW (si)) + noise. HW (si) is the
Hamming weight of state byte si, and noise is additional
noise due to other calculations performed by the controller
and thermal noise. This noise is assumed to be normally
distributed, but with unknown parameters. Such charac-
teristics are exactly what a naive Bayes classifier relies on.
Therefore we chose to use Matlab’s NaiveBayes classifier for
profiling and decoding purposes.

3.3 Leaks We Used
Our decoded was designed to output the following leaks:
� The AddKey and AddRoundKey operations leak the

Hamming weights of the 16 state bytes after the XOR with
the key/round key.
� The SubBytes operation is implemented as a look-up

table (LUT), which leaks only the Hamming weights of the
16 state bytes after the SubBytes operation (and not any
other internal state information).
� The ShiftRows operation is implemented logically as

index shuffling and as such does not leak any information.

2URL: http://dpabook.org/onlinematerial/



� The MixColumns operation is implemented using 8-
bit XTIME and XOR operations as specified in [12] and as
such leaks 36 additional bytes of internal state per round. In
addition to the 16 leaks of the final state, this gives a total
of 52 leaks per subround.

In total, each round of AES leaks 84 Hamming weights of
8-bit values. Note that we assumed that the leaks from the
key expansion process are not available to the attacker. In
addition, since all traces used identical keys it was impos-
sible to recover any direct information about the key bytes
themselves.

4. PROFILING THE TEMPLATE ATTACK
In the following discussion the term trace represents a

vector of samples. Each sample represents the power con-
sumption of the DUT at a certain point in time. In the WS2
data set we are given 200 traces, each of which consists of
100,000 samples. A trace-step represents an index into a
trace (a value between 1-100,000) representing a point in
time, and a trace-distance represents the difference between
two trace steps. Features are samples we select, across all
traces, to be used as input for the classification algorithm.

4.1 Methodology
The profiling step consisted of three general stages: First,

we created a set of candidate classifiers, each of which op-
erates on a small amount of features. Next, we applied a
greedy algorithm to combine the best features used by the
candidate classifiers and create a single classifier which oper-
ates on a large amount of features. Finally, we used knowl-
edge about the physical model of the device under attack to
optimize the decoding performance of our classifier. Each
step is explained in more detail below.

4.2 Finding Candidate Features
The first step of building the decoder was identifying the

points in time where the traces contain an intermediate value
or operation which is of interest to the attacker. Given the
200 traces, we would like to learn how the power consump-
tion behaves in each of the Hamming weight cases 0 through
8. For each leak (among the 84) we divide the 200 traces
into 9 Hamming weight classes (0 through 8) according to
the true value the leak takes.

Notice that Hamming weight of value 0,1,7,8 are relatively
rare: only 0 maps to Hamming weight 0, only 255 maps to
Hamming weight 8, and there are eight values for Hamming
weight 1 and eight values for Hamming weight 7. This fact,
combined with the small size of our training set, meant there
were only a few, if any, traces with leaks corresponding to
those Hamming weight values. For this reason we merged
classes 0 and 1 into class 2, and classes 8 and 7 into class 6.

After dividing our 200 traces into the 5 classes mentioned
above, we needed to build a classifier that can distinguish
between traces of these classes. Similar to what was done
in [22], we use a naive Bayes classifier. In this type of classi-
fier each class is represented by a mean value µ and variance
σ. In our case, we chose to train each classifier on multi-
ple samples taken from several different trace-steps, across
all traces. This makes our classifier multidimensional, with
the number of dimensions equal to the number of features
we selected. Thus, µ and σ values are actually vectors of
dimension equal to the number of features per class.

One important element in training a good classifier is
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Figure 1: Three-featured classifier feature selection.
Regions of interest are indicated by the dotted line.

selecting the right input features from a very large input
data. Since each trace consists of 100,000 samples, there are
100,000 possible features for each trace. We wanted to find
candidate features in the traces, for every leak among the
84 leaks. We follow the recommendation of [22]: instead of
taking sequential samples from a trace as features, we take
samples with a certain minimal trace-distance of n from each
other, where n is the number of trace-steps corresponding
to a measurement of a full clock cycle of the DUT. After
evaluating different values for n, we observed a significant
improvement in classification results when training our clas-
sifier on triplets of samples with distances of 8 trace-steps
between them.

To select candidate features for our classifier, we per-
formed an iterative feature ranking. For 0 ≤ i ≤ 100, 000
we try to train a classifier on 200 traces with input features
taken as the samples traces(i), traces(i+ 8), traces(i+ 16).
We call this classifier the ith classifier. To quickly measure
the performance of this three-featured classifier we perform
a 4-fold cross validation: we split our 200 traces into four
groups, containing 50 traces each; trained over 3 · 50 = 150
traces and tested performance on the remaining 50 traces.
Repeat this process another 3 times so each group will be
used for testing exactly once. We then measured the suc-
cess rate of this classifier. For each classifier i with a success
rate of 50% or above we added the samples used as its input
features – i, i+ 8, i+ 16 – into the set of candidate features.

4.3 Improving Candidate Search Efficiency
On our system, the candidate selection process took 15

minutes per leak. Since this process needs to be repeated
for each of the 84 leaks, we were interested in ways of improv-
ing its efficiency. Our general approach was to find regions
of interest (ROI) in the traces, then search for features only
in those regions. For this purpose we ran, for every leak,
a correlation test as performed in standard CPA [7]: Ev-
ery leak has a vector of size 200 of simulated intermediate
leak-values. We map these values to their Hamming weight
values, then compute the absolute value of the Pearson cor-



relation coefficient between the Hamming weights and the
trace vectors at each trace-step. For most locations the cor-
relation is less than 0.15, with several peaks which are above
0.8. We assume that 8 trace-steps correspond to a measure-
ment of a full clock cycle. Thus, if we define a trace-step
neighborhood to be 3 clock cycles from each side, we need
to take into account 24 trace-steps from each side of a single
trace-step. Therefore, for all trace-steps in which the corre-
lation is above 0.4 we say that these trace-steps and their 24
neighbors, from each side, are regions of interest (ROI) for
this specific leak. We have noted experimentally that good
candidate features are always inside the region of interest,
as illustrated in Figure 1. Therefore, we perform the can-
didate features search described in the previous subsection
only in regions of interest. Since the regions of interest are
about typically less than 2% of the entire trace, this speeds
up the search process dramatically – from 15 minutes down
to approximately 20 seconds per leak.

4.4 Selecting the Best Features
At this stage we have a list of candidate features for every

leak (of the 84). The number of candidate features per leak
ranges from 60 to 550. We would like to find the optimal
combination of these features which gives the best classi-
fication results. For this task we performed the following
greedy algorithm: Assume that there are n candidate fea-
tures for a specific leak. We define an n-size Boolean vector
used features. used features(c) = True if the candidate
c should be used in the optimal classifier. We start our pro-
cess with used features set to False for all features. Then
sequentially, for every c, we set used features(c) ← True
and measure classification results using cross-validation of
10 groups: Divide all 200 traces into 10 groups of 20 traces
each; train on 9 · 20 = 180 traces and test on 20 traces; re-
peat 10 times so each group is used for testing exactly once.
If the classification results were better with candidate c then
we leave used features(c) = True and move on to candi-
date c+1. Otherwise, we set used features(c)← False and
move on to candidate c+1. At the end of the process we are
left with used features(c) = True for all candidates which
together marginally improve the classification results. On
average, each leak was left with about 55%-65% of the can-
didate features. i.e., 35%-45% of the candidates discarded
in this process. The last trained classifier on a group of 180
traces is saved as the best classifier for the leak.

4.5 Improving Decoding Performance
The classifier we produced in the previous subsection was

trained on only 5 classes, covering Hamming weights 2 through
6. However, we need estimation for classes 0 through 8. In
addition, the very small amount of training data provided to
the classifier resulted in high variation in the estimated noise
σ between classes. To extend and improve the performance
of our decoders, we used some of our physical knowledge of
the DUT. Specifically, we made the additional assumptions
that the noise is largely invariant between classes, and that
the means of a certain feature among different classes are
linearly related to the Hamming weight of the class.

Our naive Bayes classifier returns, for each feature, a mean
and variance for each class. As illustrated in Figure 2,
inspecting a single feature in a classifier for a particular
leak shows that the means for the 5 classes seem to form
a straight line. Thus we extended our classifier: For each
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Figure 2: An example of linear regression of the
mean values of 3 features. Circles indicate means
output by the Naive Bayes classifier. Crosses in-
dicate means recomputed via linear regression for
classes 0 through 8.

feature, we found a linear function that best explains the 5
means. We did this using Matlab’s polyfit function for linear
fitting. Using this reconstructed linear function we extrapo-
lated from the mean values for classes 2 through 6 (marked
in the figure as circles) to the mean values for classes 0,1,7
and 8 (marked in the figure as crosses). In addition, we as-
sumed that the variance should be constant for all classes.
We used polyfit to find the constant value among the 5 vari-
ances and used this value for all 9 classes (0 through 8). Us-
ing those new mean values and variances we reconstructed
a new classifier (denoted the reconstructed classifier). The
classification results seemed to improve dramatically, as de-
scribed in the following subsection.

4.6 Decoding Phase
After profiling the a device that is physically identical to

the attacked one, we now have classifiers which represent all
the templates for the device. What is left now is to measure
the attacked device and use the well-trained classifiers to
estimate what the leaks are. We have 84 classifiers, each of
which will give us for each trace an aposteriori estimation of
the leaked states. Thus, for each trace the decoder outputs
a matrix of 84× 9 probabilities.

Before trying to formulate and solve a Template-TASCA
equation set, we first want to measure the quality of the
decoder. For every leak, our decoder gives us 9 aposteri-
ori probabilities of what the Hamming weight of the state
should be. We can sort these values from the most prob-
able Hamming weight to the least probable. We say that
the Hamming weight with highest probability is of rank 1,
and the Hamming weight which is least probable is of rank
9. Knowing the correct leaks, we can check the ranks of the
correct leaks. Ideally we would like the correct leak value to
be ranked 1, i.e. being given the highest probability by our
decoder. We have 84 leaks, and 200 traces which gives us
84 × 200 = 16800 aposteriori estimations for the leaks. In
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Figure 3: Ranks of correct leak values given by the
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the 5-classes original classifiers. In solid red are the
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Figure 3 we can see that in general most leaks were identified
correctly among the first 3 ranks. We can also see that the
reconstructed classifiers significantly pushed all the correct
values to be ranked among the highest 3 probabilities.

Another way to measure the performance of our decoder
is to look at the probabilities given to the correct leak states.
Ideally, we would like all correct leak values to have prob-
ability=1. In Figure 4 we can see that in the case of the
original classifiers - only a little more than third of the leaks
are estimated with high probability. The reconstructed clas-
sifiers (with regressed mean values) dramatically improved
the given estimations for the correct states.

5. THE ALGEBRAIC STAGE
Given a single trace, the output of the template decoder’s

online stage is a matrix consisting of 84 rows, each contain-
ing 9 aposteriori probabilities for the Hamming weights of
each byte of the state. In a standard template attack, the
next step would simply be to select the most likely value
for each position in the key and work down the list until
the correct key was found[26]. However, as stated in Section
1.1, not all combinations of state bytes correspond to a valid
encryption. Instead, we employ a constraint solver to find
the valid states which maximizes the aposteriori probability
for all state bytes simultaneously.

The solver we chose to use is SCIPspx version 1.2.0 [3, 4,
1]. SCIPspx won the first prize for non-linear optimizer in
the Pseudo-Boolean Evaluation Contest of SAT 2009 [15].
SCIPspx solves the optimization problem by using integer
programming and constraint programming methods. It per-
forms a branch-and-bound algorithm to decompose the prob-
lem into sub-problems, solving a linear relaxation on each
sub-problem and finally combining the results. The lin-
ear relaxation component of SCIPspx is the standalone LP
solver SoPlex [27]. The solver was run on on a quad-core
Intel Core i7 950 at 3.06GHz with 8MB cache, running
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Figure 4: Probability of correct decoding by the
classifiers. In hatched blue is the performance of the
5-classes original classifiers. In solid red is the per-
formance of the 9-classes reconstructed classifiers.

Windows 7 64-bit Edition. To take advantage of the multi-
ple hyper-threading cores of the server, six instances of the
solver were run in parallel.

We note that even though the template decoder we cre-
ated could only output the Hamming weights of the internal
states, the output of the algebraic stage is the state vector
which contains the complete AES key, and not just its
Hamming weight.

5.1 An equation set for AES
The AES instances we submitted to the solver were cre-

ated according to the principles described in [20], and are
similar in form to the example found in the appendix of
[20]. The AES equation set as described in [20] expects to
receive aposteriori probabilities for the Hamming weights of
the key bytes as part of the state. However, our training set
consisted of 200 traces created with the same key, making
it impossible to create template decoders for the key bytes
themselves. Instead, we used the apriori distribution for
Hamming weights of an 8-bit value for the key bytes:

Pr (HW = x) =

(
8
x

)
256

(5)

Some of our experiments were performed on a single trace
in the offline phase, while some were performed on a pair
of traces (each with a different plaintext). To create an
equation set for two traces, we created two separate equa-
tion sets, then concatenated them with an additional clause
which requires the keys to be identical in both states.

5.2 Combinatorial Exclusion
Since the decoder used in the template phase estimates

each potential value by a Gaussian random variable, the
aposteriori probability assigned to any candidate value, no
matter how unlikely, can never be exactly zero. In initial
testing we discovered that while the highly unlikely values
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Figure 5: Running time distribution for the two-trace scenario

provided to the solver did not cause incorrect answers, they
had the drawback of raising the running time of the solver
by one or two orders of magnitude. To improve the perfor-
mance of our attack, we made the engineering decision to
set to zero the aposteriori probabilities of all values which
are far less likely than the least likely correct value. In our
data set the most unlikely value had an aposteriori proba-
bility of 3 · 10−40. Choosing a reasonable margin of 3 orders
of magnitude, we set to zero all entries whose probability
was at most 10−43. This reduced the amount of nonzero en-
tries in the decoder output to 54% of the entire aposteriori
probability matrix.

6. RESULTS

6.1 Conditions for success
As stated in [20], there are three conditions which must

all hold for a Template-TASCA attack to succeed. First,
the correct state must be inside the solver’s solution space,
that is, all bytes of the state must be assigned a nonzero
aposteriori probability by the decoder and by the combina-
torical exclusion steps. Next, the solver must terminate in a
reasonable time. Finally, the solver’s output must be within
brute-force distance (at most 4 incorrect key bytes) of the
correct key.

6.2 Double-trace attack
Our first attack was performed on pairs of traces, which

were combined as described in Section 5.1. Each of the 200
traces in the sample set was matched to another trace, re-
sulting in 100 experiments. We were pleased to find that in
100% of the cases the attack succeeded in finding the cor-
rect key from two traces. In the two-trace attack the key
was recovered precisely, without the need for an additional
brute-forcing step. Figure 5 shows the cumulative distribu-
tion function of the running times for the two-trace attack.
The median time for a successful attack was 607 seconds,
while the maximum time was approximately 6 hours.

6.3 Single-trace attack
Our second set of attacks was carried out with the lowest

possible online data complexity - a single trace per attack.
Due to limited time we were not able to apply our attack to
a large set of single traces. Our preliminary results, however,
are very promising.

Out of the 13 instances we evaluated, 3 instances returned
all 16 bytes of the correct key and 7 returned a value which

is within brute-force distance from the correct key (either
2, 3 or 4 incorrect key bytes). The median running time of
the single-trace instances was 24 hours, while the maximum
time was 59 hours.

7. DISCUSSION

7.1 Comparison with Solver-Based Attacks
As stated in [20], there are two main methods of perform-

ing template-based algebraic attacks: Template-TASCA, which
uses an optimizer, and Template-Set-ASCA, which uses a
generic SAT solver. Optimizers are less efficient than solvers
in terms of running time. On the other hand, since a solver
does not have any efficient way of representing the objective
function which contains the aposteriori probabilities. In-
stead, the solver-based approach restricts the set of possible
solutions by using some threshold, then searches for a satis-
fying solution within this threshold. As shown in [20], with
good-quality inputs to the algebraic phase the Set-ASCA
method is much faster than the TASCA method. As the
quality of the outputs from the template phase falls, the
running time of the Set-ASCA method gradually becomes
worse than that of the TASCA method. Finally, beyond
some threshold, the Set-ASCA method is unable to recover
the correct key.

We evaluated the performance of the Template-Set-ASCA
method on a subset of the data, both in the double-trace and
in the single-trace scenarios. In the single-trace scenario the
solver-based approach had 0% success in finding the correct
key, in comparison to a 75% success rate for the optimizer-
based method. In the double-trace scenario the success rate
was approximately 30% for the solver, when compared to
100% for the optimizer. The running time of the solver-
based approach was worse than that of the optimizer-based
approach by a factor of between 2 and 10.

7.2 Conclusion and Future Work
This report shows how the Template-TASCA approach

first described in [20] can be put to practical use as a com-
plement to a traditional template attack, dramatically re-
ducing the required data complexity, both in the offline and
in the online phase. The reduced data complexity means
that template attacks can be applied to additional attack
scenarios where access to the DUT is more restricted. It
would be interesting to find ways to further reduce the data
complexity of the attack. One possible approach would be to
use the similarity between different template decoders such



as the 16 decoders which extract the 16 different AddKey
state bytes – it may be possible to train one decoder on all
16 leaks, allowing the data complexity to be reduced even
further. Another promising option would be to replace the
template component of the attack with alternative profiling-
based methods. Finally, it would be interesting to gauge the
effectiveness of the Template-TASCA approach on devices
protected by various countermeasures such as masking.
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