
Regaining Lost Cycles with HotCalls:
A Fast Interface for SGX Secure Enclaves

Ofir Weisse Valeria Bertacco Todd Austin
University of Michigan

oweisse/vale/austin@umich.edu

ABSTRACT
Intel’s SGX secure execution technology allows running compu-
tations on secret data using untrusted servers. While recent work
showed how to port applications and large-scale computations to run
under SGX, the performance implications of using the technology
remains an open question. We present the first comprehensive quan-
titative study to evaluate the performance of SGX. We show that
straightforward use of SGX library primitives for calling functions
add between 8,200 - 17,000 cycles overhead, compared to 150 cycles
of a typical system call. We quantify the performance impact of these
library calls and show that in applications with high system calls fre-
quency, such as memcached, openVPN, and lighttpd, which all have
high bandwidth network requirements, the performance degradation
may be as high as 79%. We investigate the sources of this perfor-
mance degradation by leveraging a new set of microbenchmarks for
SGX-specific operations such as enclave entry-calls and out-calls,
and encrypted memory I/O accesses. We leverage the insights we
gain from these analyses to design a new SGX interface framework
HotCalls. HotCalls are based on a synchronization spin-lock mecha-
nism and provide a 13-27x speedup over the default interface. It can
easily be integrated into existing code, making it a practical solution.
Compared to a baseline SGX implementation of memcached, open-
VPN, and lighttpd - we show that using the new interface boosts the
throughput by 2.6-3.7x, and reduces application latency by 62-74%.

CCS CONCEPTS
• Security and privacy → Security in hardware; Systems secu-
rity; Software security engineering;

KEYWORDS
SGX, Hardware security, Performance optimization

ACM Reference format:
Ofir Weisse Valeria Bertacco Todd Austin University of Michigan . 2017.
Regaining Lost Cycles with HotCalls: A Fast Interface for SGX Secure
Enclaves. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 13 pages.
https://doi.org/10.1145/3079856.3080208

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080208

1 INTRODUCTION
Cloud computing allows lowering the cost of computation and stor-
age, outsourcing the acquisition and maintenance to a third party.
Using hardware and software under the control of a third party im-
plies substantial trust: trust that the service provider will not snoop
on the data on its servers and will not tamper with the execution flow.
Even if the cloud provider can be trusted not to actively snoop or
tamper with processed data, users must also trust in the operating
system, the virtual machine manager, and the firmware (BIOS &
System Management Mode code - SMM). A compromise in the
security of any of these layers, by means of remote attack or rogue
employee tampering with the hardware, leads to compromising the
information and the execution on the cloud.

In 2015, Intel released the Skylake micro-architecture, the first
x86 production processor featuring a secure execution technology
- Software Guard Extensions (SGX) [5, 23, 35]. This technology
allows secure execution in user-space (ring 3) in a container called a
secure-enclave, which is shielded from the OS, VMM, and SMM.
Ideally, no vulnerability or intentionally malicious code in any of
these layers should compromise the confidentiality or the integrity
of the secure-enclave. No probing of physical buses outside the
processor chip should compromise the security, as the memory is
encrypted as well.

Recent work [6, 9, 24, 44, 49] has proposed new frameworks
for performing large-scale computations and for porting existing
applications to secure-enclaves. Although they provide qualitative
discussion about the performance implications of running within an
SGX enclave, it remains unclear what specific operations may slow
down execution, and by how much. Such quantitative understanding
is the corner stone for constructing effective optimization strategies
when developing secure-enclaves.

To the best of our knowledge, this work is the first quantitative
performance evaluation of SGX, quantifying the overhead of trans-
ferring control to and from secure-enclaves and encrypted memory
I/O. We give the first taxonomy of the operations involved in using
the SGX framework and their costs in machine clock cycles. Based
on this analysis, we propose a performance boosting alternative in-
terface to interact with secure-enclaves. We found that the overhead
of calling a secure-enclave function is between 8,600 and 17,000
cycles (depending on cache state), compared to 150 cycles for a
regular OS syscall [45], and compared to 1,300 cycles for a hyper-
call in a KVM virtualization solution [15]. We also found that the
mechanism allowing secure code to interact with the application or
OS outside the enclave incurs between 8,200 and 17,000 overhead
cycles (depending on cache state). This is a 54x-113x degradation in
performance compared to regular OS calls.

We evaluated several microbenchmarks to estimate the cost of
transferring buffers to and from enclaves. While [19] suggests that

https://doi.org/10.1145/3079856.3080208
https://doi.org/10.1145/3079856.3080208

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

the Memory Encryption Engine (MEE) adds no more than 12%
overhead to the benchmark execution, we found that for our mi-
crobenchmarks encryption/decryption may add up to 102% increase
in memory access time. On the mcf and libquantum benchmarks
from SPEC 2006 [21], the slowdown was 55% and 420%, respec-
tively.

The overhead of SGX-related calls becomes a significant bottle-
neck in applications with high system-call frequency. For instance,
a database application serving 200,000 requests per second (e.g.,
memcached, as evaluated in Section 6.2) requires at least 200,000
system calls to transfer responses through the network. According to
our measurements, each call consumes at least 8,200 cycles, totaling
1,640 million cycles. On a 4 GHz core, this amounts to 41% of the
core time spent on merely facilitating the calls, without doing any
actual work. Our evaluation of non-trivial applications in Section 6,
shows that this is not just a hypothetical problem.

Identifying that context switches used for facilitating system calls
are a major bottleneck in SGX applications, we design and imple-
ment HotCalls - an alternative interface for calling enclave functions
and requesting system calls by the enclave. HotCalls are based on
a spin-lock synchronization mechanism, and provide more than an
order of magnitude speedup. Compared to the standard SGX SDK
[25] framework, HotCalls cost only 620 cycles per system-call in
most cases, a 13-27x improvement.

We evaluated the performance of three non-trivial applications
within SGX: openVPN (encrypted tunnel), memcached (memory
based database), and lighttpd (fast HTTP server), using a straight-
forward approach to port them into SGX secure-enclaves. We show
that, using HotCalls, it is possible to improve throughput by 2.6-3.7x
and reduce the applications’ response latency by 62-74%.

To summarize, we make the following contributions:

• We identify and analyze fundamental operations in SGX
technology that have major performance implications. We
provide the first comprehensive evaluation of the latency
of each such operation, by designing and running a set of
microbenchmarks. Based on the microbenchmarks’ results,
we offer best practices for using SGX when performance is
just as important as security.

• Leveraging the insights from the microbenchmarks, we
design and implement a new interface to SGX, HotCalls,
for communication between secure-enclaves and untrusted
code. HotCalls are 13-27x faster than the existing mecha-
nism provided by the SGX SDK.

• We evaluate the benefit of HotCalls on widely used appli-
cations: openVPN, memcached, and lighttpd, showing that
the throughput of these applications can be improved by a
factor of 2.6-3.7x and the response latency can be reduced
by 62-74%.

2 SGX - BACKGROUND
With the 6th Generation Intel Core processors, Skylake, Intel intro-
duced the Software Guard Extensions (SGX) instruction set that
enables the use of a secure execution environment [5, 23, 35]. Sim-
ilar to ARM TrustZone [3] secure world, SGX allows creating a
secure execution context, called a secure-enclave, protected from
the operating system and other user applications. Unlike the secure

world in ARM TrustZone, the secure context created by SGX has
only user-level privileges, and each user application may create sev-
eral distinct secure-enclaves. A secure-enclave is a reverse sandbox -
it protects the user-level software from being compromised by the
environment: the operating system, the virtual machine manager,
the BIOS (via SMM), and the hardware surrounding the CPU chip.
Any of these may be malicious (like adversary OS Iago attacks
[10], or hardware cold boot attacks [20]) or compromised (an OS,
VMM, or SMM vulnerability [17, 47]). SGX allows clients to se-
curely run software on untrusted servers maintained by a third party
such as Amazon cloud computing, Microsoft Azure, or other cloud
computing providers.

Guaranteeing confidentiality and integrity of execution on a re-
mote third party server is not trivial. The cloud provider has inherent
access to the hardware (memory buses, BIOS image) and the virtual
machine management software (VMM), allowing the provider to
eavesdrop on the memory contents and the execution flow of all
software running on its servers. A security breach may also be in-
troduced by a rogue employee in the cloud company, modifying the
BIOS image or patching the VMM software. SGX allows running
software operating on secret data in the cloud, without compromising
its security. Ideally, it should not be possible for the cloud provider
to affect the execution flow of the software, or inspect the secret
data being processed, beyond the impact of a potential denial of ser-
vice attack. SGX secure-enclaves may be used to implement secure
databases, software using a secret key to encrypt/decrypt data, or
other services processing sensitive data while running on hardware
or software under the control of a third party.

The technical details of SGX instructions are detailed in the Soft-
ware Developer Manual [28]. At boot time, the BIOS defines an area
in memory called the Enclave Page Cache (EPC). This is part of the
Processor Reserved Memory (PRM) area, which cannot be accessed
by any software, regardless of its privileges. The EPC is encrypted by
the Memory Encryption Engine (MEE) [19] residing on the proces-
sor die. Every processor has two master secrets saved as fused keys,
set uniquely at manufacturing time for each individual processor.
The first master secret is used to derive memory encryption keys and
it is not kept in Intel’s records. The second master secret is used to
derive a public-private authentication pair, used for attestation, and
it is stored in Intel’s database. The MEE protects against hardware
attacks, trying to snoop on the data when it is in transit to and from
memory. The MEE also provides integrity protection, preventing
roleback attacks, and protects against malicious modification of the
linear-to-physical mapping by a malicious OS or VMM.

The secure context is created by initializing a secure-enclave using
the ECREATE 1 instruction. Memory pages containing code and
data are copied into the enclave’s encrypted memory by invoking the
EADD and EEXTEND instructions. This code is referred to as the
trusted code. The pages added to the enclave are hashed to generate
an enclave measurement. After all the trusted code and data are
transferred into the enclave, the measurement is finalized by invoking
EINIT. During the attestation process [29], the CPU uses the relevant
master secret to sign the measurement and generate a report. The
report is passed to a remote client (running on a trusted machine),

1SGX supports only two instructions: ENCLU and ENCLS. All operations such as
ECREATE, EADD, EINIT, etc. are considered leaf functions of ENCLU or ENCLS,
but are referred to as simply instructions for clarity.

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Enclave –
Trusted code

Application –
Untrusted code

Plaintext shared memory Encrypted memory

ocall

ecall

• Can access encrypted and
plain text memory

• No access to system calls

• Can only access
plain text memory

• Can call system API
functions, e.g., fread,
fwrite, time, etc.

Figure 1: Interaction between the application and the secure-
enclave: control is transferred to the enclave via ecall; requests
for OS API calls are processed via ocalls.
which then contacts Intel’s servers to verify that the signature was
produced by a genuine Intel processor. The remote client can then
provision secret data to be processed by the enclave via a secure
channel that is created as part of the attestation process. We refer the
interested reader to [13] for additional information.

2.1 Application-Enclave Interaction
Entering the enclave: Figure 1 illustrates the communication mech-
anisms between the application and the secure-enclave. After the
secure-enclave is initialized, the only way for the untrusted code
(outside the enclave) to start executing the trusted code (inside the
enclave) is by invoking the EENTER instruction. EENTER performs
the context switch into the enclave, saving the state of the untrusted
code and restoring the last known state of the trusted code. This
context switch is conceptually similar to VMENTER and VMEXIT
used for virtual machine context switches in Intel’s VTX technology
[36]. To ease development of secure-enclaves, Intel provides wrap-
per code, called ecall (for entry call), to perform the preparation of
the environment and invoke the EENTER instruction [26, 27].

Accessing external resources: Because the enclave is trusted
code running with user-level privileges, i.e., ring 3, it has no access
to hardware or other OS resources. In order to gain access to external
resources, such as the file system, network, or clock, the enclave must
exit to the untrusted code. It can do so via the EEXIT instruction.
EEXIT performs the reverse context switch and switches back to the
untrusted code. The wrapper code to do so is called ocall (for out
call).

Declaring edge calls: ecalls and ocalls are considered edge func-
tions, as they cause execution to cross security boundaries. The func-
tions’ parameters need to be marshalled and copied from encrypted
memory to plaintext memory, and vice versa. For the boundary-
crossing to be secure, several security checks need to be performed
on the call’s parameters, particulary in the case that they are point-
ers. To ease the development of SGX enclaves, Intel provides an
edge function creator tool called edger8r (pronounced edgerator), to
automatically generate secure wrapper code of ecalls and ocalls. If
some of the parameters passed to the edge function are buffers, the
specific wrapper code generated depends on whether the buffers are
used as input parameters, output, or both.

To automatically generate the ecalls and ocalls code, the program-
mer must use an SGX-specific syntax to declare the edge functions
in an EDL extension file. The declaration includes the parameters
each function receives, and their attribute: input, output or both. The

edger8r then parses the EDL file and generates wrapper glue code
for ecalls and ocalls. The glue code consists of two parts: trusted
and untrusted. Our proposed HotCalls framework makes use of this
generated code to facilitate the calls.

3 OVERHEAD OF FUNDAMENTAL
OPERATIONS

Inspecting the SGX technical documentation raises several questions
with respect to performance:

What is the overhead of a secure context switch into the en-
clave, and out of it? Every access to non-user-space resources, such
as files, network, clock, etc. requires a context switch to the untrusted
code, to perform an OS API call. If the enclave code performs such
requests at high frequency, the time spent on the context switches
will have a drastic impact on the program’s performance. Table 1
describes the microbenchmarks we evaluated. Microbenchmarks 1,
2, 4, and 5 specifically measure context switch latencies.

What is the cost of passing parameters and data between the
application and the secure-enclave? In order to service these re-
quests, parameters and buffers must be transferred from the secure-
enclave to untrusted execution, and vice-versa. Microbenchmarks
3 and 6 in Table 1 measure the cost of transferring data in each
direction.

What is the cost of accessing encrypted memory? The enclave
memory resides in the EPC and it is encrypted. The Memory En-
cryption Engine (MEE) provides both confidentiality, integrity, and
protection from rollback attacks. Providing these security guaran-
tees is expected to come at a performance cost. Microbenchmarks 7
and 8 measure the access time for consecutive memory buffers of
various sizes, compared to access times for regular (not encrypted)
memory. Microbenchmarks 9 and 10 measure the access time of non-
consecutive reads and writes, and estimate the cache miss latency of
encrypted memory, compared to that of regular memory.

3.1 Experimental Setup
We ran all experiments on a Supermicro server X11SSZ-QF, 64
GB DDR4 RAM @ 2133 MHz, Intel Core I7-6700k 4GHz with 4
hyper-threaded cores (total of 8 logical cores). Dynamic frequency
and voltage scaling were disabled; the operating system was the
Ubuntu server 14.04 LTS. The SGX SDK version we used is 1.5.80.

Measuring methodology: We used the read time stamp counter
instruction - RDTSCP, to estimate execution time in clock cycles.
RDTSCP is a serialized variant of RDTSC, obviating the need to
combine the costly CPUID instruction with RDTSC. On production-
deployed SGX systems, RDTSC and its variants are not allowed
within the enclave, hence all RDTSCP calls must be executed in the
untrusted code. We measured RDTSCP to be accurate up to +/- 2
cycles. We ran each microbenchmark for 10 groups of 20,000 runs,
totaling 200,000 test executions.

When using RDTSCP to measure cycle count of a user-space
operation, it is important to ensure that there are no context switches
to the operating system, which would contaminate the measurement.
To avoid this contamination, we ran each experiment many times.
Since interrupts and context-switches to the OS are infrequent, re-
peating the experiment multiple times ensure that the majority of the
measurements are not interrupted. Moreover, any context-switch to

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

Micro-benchmark Description Median Latency (cycles)

1 Ecall (warm cache)
Calling a secure enclave function with no parameters, and immediately returning.

See Fig. 2a (solid line).
8,640

2
Ecall (cold cache) Same as above, the entire cache is flushed between consecutive experiments.

See Fig. 2a (dotted line).
14,170

3 Ecall buffer transfer
Calling a secure enclave function, passing 2KB buffer to / from / to&from

the enclave. Other buffer sizes are depicted in Fig. 4.
9,861/11,172/10,827

4 Ocall (warm cache) Exiting the secure enclave to execute an untrusted call. See Fig 2b (solid line) 8,314

5 Ocall (cold cache)
Same as above, the entire cache is flushed between consecutive experiments.

See Fig. 2b (dotted line).
14,160

6 Ocall buffer transfer
Calling untrusted code, passing a 2KB buffer to / from / to&from the

untrusted code. Other buffer sizes are depicted in Fig. 5.
9,252 / 11,418 / 9,801

7 Reading memory
Consecutively reading from a 2 KB buffer in encrypted/plaintext memory in

chunks of 64 bits. Other buffer sizes are depicted in Fig. 6.
1,124 / 727

8 Writing memory
Consecutively writing to a 2 KB buffer in encrypted/plaintext memory, in

chunks of 64 bits. Other buffer sizes are depicted in Fig. 7.
6,875 / 6,458

9 Cache load miss Reading 8 bytes (64 bits) from encrypted/plaintext memory 400 / 308

10 Cache store miss Writing 8 bytes (64 bits) to encrypted/plaintext 575 / 481

Table 1: Microbenchmarks targetting fundamental operations using SGX secure enclaves. Every microbenchmark consists of 10
batches of 20,000 experiments, totalling 200,000 measurements. For microbenchmarks involving memory operations, the relevant
memory addresses are evicted from the last-level cache prior to every single measurement.

the OS while the application is executing inside the enclave, causes
an Asynchronous Exit - AEX, which forces the execution to jump
to a known location in the untrusted code. We monitored this loca-
tion in order to count the number of AEX events. Out of 200,000
measurements per micro benchmark, around 200-300 experienced
an Asynchronous Exit. Hence, we discarded those runs for the sake
of performance estimation.

3.2 Measuring Ecalls Overhead
When the untrusted code wishes to initiate a trusted function, it does
so via an ecall. The transition into and out of the trusted code is
implemented partially in software, i.e., the SDK, and partially in
hardware via the EENTER and EEXIT instructions.

Software interface: The ecall is a wrapper to the EENTER in-
struction. The ecall first locates the enclave with the specified ID,
then acquires a read/write lock, finds an available Thread Control
Structure (TCS), saves Advanced Vector Extensions (AVX) [18]
state, checks for floating point exceptions, and finally calls the EEN-
TER instruction.

Hardware interface: The EENTER instruction preforms a se-
cure context-switch as described in Intel’s Software Developer Man-
ual (SDM) [28]. Most microcode operations in EENTER involve
disabling debugging/tracing mechanisms and defensive checks of
enclave management structures: SGX Enclave Control Structure
(SECS) and Thread Control Structure (TCS). After validating the
SECS and TCS structures, the registers representing the untrusted
context (e.g., RAX, RSP etc.) are backed up and the enclave context
is loaded instead. At the completion of the trusted function execu-
tion, EEXIT performs the reverse context switch, and un-suppresses
the debugging/tracing mechanisms. As these operations potentially
involve sparse encrypted-memory accesses, they may add signifi-
cant latency (see Section 3.4, microbenchmarks 9,10 in Table 1, and
Figure 8).

To measure the latency of performing an ecall, we created an
empty ecall, i.e., a trusted function that receives no parameters and
returns no parameters. Since running RDTSCP inside the enclave
generates a fault, we can only measure the execution time of en-
tering and exiting the enclave together. The solid line in Figure 2a
depicts the cumulative distribution function (CDF) over 200,000
measurements. Over 99.9% of the measurements are between 8,600
and 8,700 cycles. For comparison, [45] estimates a transfer to the
OS and back in 150 cycles, and [15] estimates hyper-calls to the
hypervisor as taking 1,300 cycles (KVM hypervisor on x86 proces-
sor). These measurements reflect performance with a warm cache.
Because of the repetitive nature of our tests, the memory structures
that are accessed to execute the ecall are in cache for most runs.
To eliminate this artifact, we conducted the same experiment, but
flushed the entire last level cache (LLC) before each run. The dotted
line in Figure 2a depicts the CDF of this experiment: the round trip
time of executing an ecall is between 12,500-17,000 cycles, with a
median of 14,170 cycles, that is, 83-113x slower than an OS system
call.

3.2.1 Transferring Memory To/From the Enclave. When transfer-
ring parameters to a secure function, the SDK framework generates
code to serialize all the parameters inside a single contiguous data
structure. This data structure is in the insecure memory and a pointer
to the data structure is transferred to the trusted function. To avoid
data leakage from secure memory, the trusted function wrapper veri-
fies that the entire data structure pointed by the pointer is outside the
enclave memory.

When dealing with buffers, the programmer can choose among
four options: user_check, in, out, and in&out. The programmer se-
lects the option when declaring the ecall in the EDL file. The EDL
file is written by the programmer with a specific Intel-provided syn-
tax, to declare edge functions (ecalls and ocalls), the parameters they
receive, and additional permissions for each edge function. Figure 4
reports the round trip time in cycles of ecall including transferring

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

8 10 12 14 16 18 20
0

0.5

1

a) Ecalls Warm cache

Cold cache

8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

b) Ocalls Warm cache

Cold cache

Figure 2: CDFs of ecalls and ocalls performance. In cold cache
experiments the entire 8 MB LLC cache was flushed prior to
every experiment, causing relevant data structures and code
needed for the ecalls/ocalls to be fetched from memory. a) ecalls:
with warm cache, 99.9% of the calls complete between 8,600
and 8,680 cycles. With cold cache 99.9% of the calls take be-
tween 12,500 and 17,000 cycles. b) ocalls: without flushing the
cache 99.9% of the calls complete in 8,200 - 8,400 cycles. With
cold cache 99.9% of the ocalls take between 12,500 and 17,000
cycles.

buffers to&from the enclave. The cycle count for transferring 2 KB
buffers are shown in Table 1, microbenchmark 3.

Zero copy: The user_check option means that the SGX frame-
work treat the pointer provided as if it were a value parameter. No
security checks are carried out to validate if it points to encrypted or
regular memory and no copy is done. This is useful if this pointer is
pointing to encrypted memory (received earlier from the enclave),
or in case of transfer of a pointer, which will be used later by the
untrusted code. An example can be a FILE pointer that the enclave
will later use in a fread call.

Copying in: The in option tells the edger8r tool to generate wrap-
per code that will allocate memory in the secure memory, according
to a size parameter supplied by the untrusted code, and then copy
the buffer into the enclave. Memory encryption is transparent to
software: memory writes to secure memory are first written un-
encrypted in cache, and are encrypted by the MEE when the cache
line is evicted to RAM. The pointer that will be given to the trusted
function implementation will point to a location within the enclave
encrypted memory. This is useful especially in cases where a threat
of Time-Of-Check-Time-Of-Use attacks (TOCTOU) exists. For ex-
ample, if the secure-enclave checks a cryptographic signature of a
given data, and then uses the (supposedly verified) data for a critical
operation, while between the time of check and the time of use the
untrusted code might have changed the data. In order to measure
the accurate latency of transferring new data into the enclave, we
removed the buffers inside and out of the enclave from the cache by
calling clflush on the relevant addresses, before each measurement.

Copying out: The out option is used when the untrusted code
passes a buffer as an output argument, i.e., the trusted code fills the
buffer with data. Using the out option generates wrapper code that
allocates a buffer in secure memory according to a size parameter
supplied by the untrusted code, zeroes the entire buffer, and passes

0.5 1 1.5 2 2.5
0

0.5

1

a) Hot Ecalls Warm cache

Cold cache

0.5 1 1.5 2 2.5

Cycles (x1000)

0

0.5

1

b) Hot Ocalls Warm cache

Cold cache

Figure 3: CDF of HotEcalls and HotOcalls. Over 78% of the
calls are executed in less than 620 cycles, and 99.97% are com-
pleted within 1,400 cycles. For comparison, the native SGX
SDK calling mechanism is 13x-27x times slower. HotCalls’ foot-
print in memory is extremely small, compared to native calls,
reducing the chances of cache misses during the HotCall execu-
tion.

it as the pointer for the trusted function. Upon return, this buffer is
copied back to the insecure memory. The security reasoning behind
zeroing the buffer is to avoid information leakage. Since the buffer
is allocated on the secure memory heap, it may initially contain
secret data. Should the trusted function fill only part of the out
buffer, this secret data will be copied back to the insecure memory,
leaking secret data similar to the HeartBleed bug [16]. To prevent
data leakage, the SDK zeroes the buffer using a proprietary version
of memset, which operates byte-wise. This is extremely inefficient
on a 64 bit platform, and explains the added latency when using the
out option.

Copying in&out: The in&out option is used when the untrusted
code passes a buffer as input and output argument. In this case the
generated wrapper code allocates a buffer in secure memory, copies
the data from the insecure memory, and passes the new allocated
buffer to the trusted function. Upon return, the buffer is copied back
to the insecure buffer, obviating the need to zero the allocated buffer,
like in the case of the out option. Copying in&out is faster than using
just the out option, as the memcpy used by the SDK is more efficient
than the byte-wise memset used in the out option.

3.3 Measuring Ocalls Overhead
When the secure code requires access to external resources, such as
network, files, clock etc., it needs to invoke out-calls.

Software interface: Similar to ecalls, ocalls are declared in the
EDL file. The edger8r tool provided in the SGX SDK generates
trusted and untrusted glue code. The trusted code marshals data
structures, performs security checks on pointers values, and then
executes the EEXIT instruction. The untrusted code organizes the
input arguments, calls the requested OS API call (fopen, send etc.),
marshals data to be returned to the enclave (the ocall output argu-
ments) and executes the ERESUME instruction to resume execution
of the trusted code.

Hardware interface: The operations performed by EEXIT are as
described in Section 3.2. The operations performed by ERESUME

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

M
ic
ro
-s
e
co
n
d
s

5

10

7.5

2.5

12.5

Figure 4: Latency of ecall + transferring a buffer in/out/in&out.
Transferring a buffer out is extremely taxing due to the ineffi-
cient memset implementation in SGX SDK.

instruction are described in Intel’s SDM [28]. ERESUME performs
similar operations as EENTER, but resumes execution of the trusted
code from the instruction after EEXIT.

As in ecalls, pointer parameters can be marked in the EDL file as
user_check, in, out, in&out to instruct the edger8r how to generate
the code. Figure 2b shows the round trip latency for performing
an ocall. Figure 5 shows the performance implication of using the
in/out/in&out options when transferring buffers to/from ocalls.

Zero-copy: As before, user_check entails zero-copy and no
checks. This is useful when passing pointers that are provided by
the OS, such as a file pointer.

Copying out: contrary to ecalls, in the case of ocalls, the in
option means “into the ocall”, i.e., from the secure memory out to
the insecure memory. The wrapper code verifies that the pointer
points to a location within the enclave. It then allocates memory
on the insecure stack according to a size parameter supplied by the
enclave (no use of malloc here). Finally, it copies the buffer to the
insecure memory. Upon re-entry to the enclave the allocated memory
is freed by unwinding the insecure stack.

Copying in: The out option stands for “out of the ocall, into
the enclave”. The wrapper code allocates memory on the insecure
stack, according to a size parameter supplied by the enclave. The
newly allocated buffer in the insecure buffer is then zeroed. After
the ocall itself returns, the buffer is copied back into secure memory.
In our opinion, zeroing the buffer in the insecure memory has no
security benefit. The untrusted code can access this memory anyway,
prior to invoking the latest ecall. As mentioned before, zeroing
the buffer is carried out via memset, which the SDK implements
as byte-wise zeroing. This is extremely inefficient, and explains
why the out option is much slower than the in&out option. We
observe that zeroing a buffer in the plaintext memory does not add a
security benefit, and thus this operation can be removed. In Section 6,
we evaluate the impact of our No-Redundant-Zeroing approach on
common applications.

3.4 Measuring Memory Access Overhead
The enclave code can access both regular memory, and enclave mem-
ory. The enclave memory resides within the Enclave Page Cache
(EPC) and is encrypted by the Memory Encryption Engine (MEE),

M
ic
ro
-s
e
co
n
d
s

5

10

7.5

2.5

12.5

Figure 5: Latency of ocall + transferring a buffer
to/from/to&from untrusted memory. Transferring from
untrusted code has high latency, due to (redundant) zeroing of
the buffer in the untrusted memory with the inefficient memset,
provided by the SDK.

which resides on the processor’s die and is described in [19]. The
MEE provides confidentiality, integrity, and anti-roll-back protec-
tions for the entire EPC. These guarantees are provided by maintain-
ing an integrity tree, with its root stored on the processor’s die. A
full walk of the tree involves several memory accesses. Therefore, a
“MEE cache” is used to prevent significant performance costs, when
accessing nearby memory addresses.

The work presented in [19] also analyzes the potential perfor-
mance degradation of using encrypted memory, and evaluates the
worst case benchmark to exhibit a 12% overhead when using en-
crypted memory. However, our measurements shows substantially
higher overhead, as will be detailed shortly.

Consecutive buffer access: Figures 6, 7 plots the memory
read/write times when accessing encrypted and plaintext memory,
for different buffer sizes. Entries 1 and 8 in Table 1 list the results
of reading and writing 2 KB buffers. The memory read & write mi-
crobenchmark consists of accessing 8-bytes (64 bit) aligned words
of consecutive addresses, for different buffer sizes. The buffers were
flushed out of the last level cache (LLC) before each experiment,
and mfence was called before the final call to RDTSCP, to ensure
the operations had completed. When measuring write latency, the
experiment was completed by flushing the buffer from cache via
clflush followed by mfence prior to calling the final RDTSCP.

Cache misses: To estimate cache-load-miss and cache-store-miss
latency, we performed the same read and write experiments, access-
ing only the first 8 bytes (64 bit) of an address which is aligned to the
cache line size (64 bytes on the tested machine). The cache line was
evicted from the LLC before each measurement. The first four bars
of Figure 8 shows the results on our micro benchmarks for reading
and writing in encrypted memory, and for cache miss penalties. The
cycle counts are detailed in lines 9,10 of Table 1. Cache-load misses
and cache-store-misses are 30% and 19.5% slower when accessing
encrypted memory vs. plaintext memory.

SPEC 2006 memory intensive benchmarks: To test the effect
of more complicated memory access patterns, we selected three
highly memory-intensive benchmarks from SPEC 2006 [21]: mcf,
libquantum, and astar. Figure 8 compares the latency of the memory

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

M
ic
ro
-s
e
co
n
d
s

1

2

1.5

0.5

2.5

3

Figure 6: Latency of consecutive memory reads, for encrypted
and plaintext memory. All buffers were evicted from the
cache prior to every experiment. The overhead of reading
encrypted memory of sizes 2,4,8,16,32 KB is 54.5%, 68%,
71%,94%,102%, respectively.

microbenchmarks mentioned and the selected benchmarks from
SPEC 2006. Previous work published by Intel [19] measures several
benchmarks from SPEC 2006, showing that, in the worse case, the
encryption overhead is roughly 12%. In our measurements, mcf
runs 55% slower in the SGX enclave, and libquantum runs 5.2x
slower. A likely explanation for the extreme slowdown in the case
of libquantum, is that it required 96 MB of memory, while the
entire Enclave Page Cache (EPC) is 93 MB. This forces paging out
encrypted memory pages, which requires further SGX operations.

3.5 Lessons Learned
We now discuss insights from the measurements, which can be
used by developers designing secure-enclaves to devise optimization
strategies. These insights were also instrumental in our design of
HotCalls, as we discuss in Section 4.

Cost of ecalls & ocalls: Compared to regular OS syscalls, an
ecall is 54x more cycles at best (8,200 vs 150) when the cache is
warm, and 83-113x at worst when cold (12,500-17,000 vs 150). If
an application has high call rate, for example, 100,000 calls per
second, on a 4 GHz core the ocalls will consume 20-40% of the
execution time. The applications evaluated in Section 6 exhibited
more than 200,000 calls per second, as detailed in Table 2. Our
solution, HotCalls, proposes an alternative calling mechanism that
reduces this latency to as low as 620 cycles per call, which is 13-27x
faster than the default ecalls and ocalls mechanism.

Ocalls vs. Ecalls: Ocalls may execute slightly faster than ecalls.
Transferring buffers from the enclave to the untrusted application is
faster using ocalls: 9,252 cycles for ocalls in vs. 11,712 cycles for
ecalls out (2 KB buffers). This insight may lead to an optimization
strategy of using ocalls to receive data from the enclave, rather then
delivering it via an output parameter with ecalls.

Cost of memory access: Write accesses of encrypted memory
incur 6.5-19.5% overhead, and read accesses incur 30-102% over-
head, depending on buffer size. For software that is memory read
intensive, we can estimate the impact on throughput in the following
way: without encryption, N memory reads are carried out in time
T , and with encryption in 1.5T (assuming 2 KB buffers). Thus, we
can expect that encryption slow down throughput to N

1.5T / N
1T = 66%

throughput, not accounting for any other SGX performance impact.

M
ic
ro
-s
e
co
n
d
s

10

20

15

5

25

Figure 7: Latency of consecutive memory writes, for encrypted
and plaintext memory. All buffers were evicted from the cache
prior to every experiment. The overhead of writing encrypted
memory is roughly around 6% for all buffer sizes above 1 KB.

Selecting the right transfer method: For both ecalls and ocalls,
the out option is extremely inefficient. This is due to the inefficient
implementation of memset in the SDK, used for zeroing buffers.
Assuming that the untrusted code has nothing to hide from the
enclave, it is more efficient to use the in&out option instead. Despite
the fact that the buffer will be redundantly copied to the secure
memory, this will save 885 / 1617 cycles for ecalls / ocalls in the case
of a 2 KB buffer.

Opting for user_check: If the enclave just dumps data to the
output buffer, then there is no threat of the untrusted code modify-
ing the data while the enclave code is processing it. In that case it
is preferable to use the user_check/zero-copy option, and have the
enclave directly write data to un-encrypted memory. This will save
about 3,000 cycles on a 2 KB buffer (11,712 vs 8,640 cycles). Devel-
opers should be careful when using this option. If the secure-enclave
performs encryption or decryption in place, having access to the
partially-processed buffer during the encryption/decryption process
may lead to exposing the secret key.

Further optimizations: The latency incurred in buffer transfer-
ring is incurred by memcpy and memset. The SGX stdlib imple-
mentation of memset is operating on memory byte-wise, which is
extremely inefficient on a 64 bit processor. Using a more optimized
version of memset may significantly improve performance. Addition-
ally, when large buffers need to be transferred, it may by beneficial
to use optimized versions of memcpy, utilizing Advanced Vector Ex-
tensions (AVX) [18] instructions which are able to copy words larger
than 64-bits efficiently. Intel may wish to include this optimization
in future versions of the SGX SDK.

4 HOTCALLS: AN OPTIMIZED SGX
INTERFACE

Motivated by the fact that using the default SDK calling mechanism
may lead to a 113x slowdown, we now present HotCalls, an alterna-
tive mechanism to perform ecalls and ocalls, leading to an order of
magnitude performance improvement. Compared to 8,200-17,000
cycles required for SDK ecalls/ocalls, HotCalls can be as fast as 620
cycles. While SGX calls rely on expensive secure context switches,
HotCalls operations are based on using shared un-encrypted mem-
ory.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

(7) (8) (9) (10) Entries in Table 1

Figure 8: The overhead of memory encryption on memory-
access speed: L and S stand for Load and Store. Memory reads
and writes are of consecutive 2 KB buffers. mcf, libquantum
(libq), and astar are memory intensive benchmarks from SPEC
2006.

4.1 HotCalls Architecture
Edge calls in SGX are context-switch operations, similar to
VMENTER and VMEXIT used for virtual machine context switches
in Intel’s VTX technology [36]. Previous work exists on optimizing
communication mechanisms between hardware and software (inter-
rupt handlers), and virtual machine manager and guest operating
systems (hyper-calls or VM-exits). An approach that has shown to
be effective is avoiding the software context switch by using shared
memory as a communication channel and dedicating a thread to poll
for new messages. This has been tried in Linux NAPI to optimize
access to hardware [43] and in virtualization scenarios to eliminate
the need for an expensive context switch [31, 34]. We take a similar
approach and propose an architecture that consists of a requester
and a responder, communicating via un-encrypted shared memory.

Figure 9 illustrates this architecture, where the enclave code is the
requester, and the untrusted code is the responder. The requester is
the party requesting a call, while the responder is an On Call thread,
standing by, waiting for a call. It does so by constantly polling a
shared memory location. Synchronization of the shared memory
is provided using a spin-lock. When the requester makes a call, it
acquires the spin-lock and checks a shared Boolean variable to verify
that the responder is not currently busy. If the responder is available,
the requester copies relevant data to unencrypted shared memory,
and points to that data via the *data pointer. The code to encapsulate
parameters within the data structure is the same code used by the
SDK ecalls/ocalls mechanism, that is automatically generated by the
edger8r tool. To support more than one specific call, e.g., read, write
etc., the requester specifies the ID of the call it is requesting. This
is an entry ID to a function call table, known to the responder. The
call table approach is similar to the SDK implementation of ecalls
and ocalls. Once the data pointer and the requested call ID are in
place, the requester signals “go” to the responder, by marking the
responder as busy, and releases the lock. The responder is constantly
monitoring the same shared memory and executes the relevant call
when requested.

4.2 Practical Considerations
Spin-lock: Use of standard POSIX MUTEX is not possible, as
it requires calling upon the operating system services, defeating
the entire purpose of HotCalls. Synchronization techniques using
MONITOR/MWAIT instruction entails several thousands of cycles,
similar to regular SGX calls [4]. The SGX SDK provides a spin-lock
implementation as sgx_spin_lock. This is a straightforward busy-
wait implementation and does not relate to SGX, so it can be used
by both the enclave and the untrusted code.

Minimizing self-contention: To ensure that both the requester
and responder get a chance to acquire the spin-lock, PAUSE instruc-
tions are added after releasing the lock. This gives a chance to other
threads to try and acquire the spin-lock. The PAUSE instruction
was designed by Intel specifically to improve performance in spin-
lock busy wait loops, by minimizing memory order violations of
speculative loads, and also to help reduce power consumption.

Maximizing utilization: As the responder is constantly monitor-
ing the shared memory, it is effectively using 100% of the logical
core. The utilization can be considered as the amount of time the
responder is spending on ExecuteCall vs. the time spent on acquiring
the lock and checking the Boolean flag value. This utilization can
potentially be improved by sharing the responder thread with several
requesters.

Preventing starvation: Contention of several requesters on the
responder can cause the requester to loop many times before it
acquires the lock and the responder is available. The maximum worst-
case wait time is therefore potentially unbounded. As a mitigation for
this potential starvation, the requester can set a timeout - a maximum
number of times to check if the responder is available. If the timeout
expires, the requester can fall back to using regular SDK calls. In
our experiments and evaluation of applications, we set this timeout
to 10, and it never expired. Nevertheless, we find this mechanism
vital for producing reliable code.

Conserving resources at idle times: When there are not many
calls, the responder wastes CPU resources, constantly polling shared
memory. To conserve resources during idle times, a timeout counter
can be set. The counter is decremented when there is no request
waiting (step 2 in Fig. 9, right side), and reset when a request ar-
rives (in step 3). When the timeout counter expires, the responder
set a sleep flag, and goes to wait on a conditional variable (POSIX
pthread_cond, or sgx_thread_cond). The requester notices the sleep
flag is set and signals the condition variable before issuing the re-
quest.

Marshalling parameters to be transferred to the function:
The SDK generates code for packing ecall/ocall parameters. The
framework we built for our evaluation automatically uses this code
to pack/unpack the parameters and copy buffers if needed. This
solution allows us to also avoid redundant buffer zeroing when trans-
ferring data from the untrusted code, without compromising security.
The performance implications of removing the redundant memset
will be detailed in the next section.

4.3 Empirical Evaluation of HotCalls
Our implementation of HotCalls consists of 115 lines of code. Simi-
lar to the microbenchmarks described in Section 3, we performed

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Shared	Memory

Enclave Untrusted	Code
Request	call
1.	Acquire	lock
2.	Set	data
3.	Set	call_ID <- function_ID
4.	Mark	“Go”,	release	lock
5.	Acquire	lock
6.	Is	“Done”	set?
- No:	release	 lock	and	go	to	5

Poll	for	call
1.	Acquire	lock
2.	Is	”Go”	set?
- No:	release	 lock	and	go	to	1

3.	Release	lock
4.	Execute(call_ID,	data)
5.	Acquire	lock
6.	Mark	“Done”,	release	 lock

Spinlock void	*data call_ID Go	|	Done

Figure 9: HotCall architecture. The secure-enclave requests a
call by signaling a request via a shared variable in un-encrypted
memory, together with the ID of the requested function. The
responder thread in the untrusted side continuously polls the
shared memory to check if a call request has been made.

10 batches of 20,000 measurements each, totalling 200,000 mea-
surements. Figure 3 shows the CDF of the latency of HotEcalls and
HotOcalls. In both cases, more than 78% of the calls took less than
620 cycles (warm cache). Over 99.97% of the calls took fewer than
1,400 cycles. For comparison, the ecalls/ocalls mechanism provided
by the SGX SDK requires 8,200-17,000 cycles.

4.4 Implications of Using an Additional Core
The benefit of using an additional logical thread to utilize HotCalls
can be analyzed from two perspectives: application’s throughput and
overall power consumption. Analysis of both perspectives depends
on whether HotCalls increases the application’s throughput by more
than a factor of 2, as explained below.

Throughput: When considering optimizing an application with
HotCalls, the overall throughput increase by using HotCalls should
be compared to the potential benefit of simply adding an additional
worker thread. This is not always possible, as some applications
are developed in a single thread. The additional extra thread cannot
increase the overall throughput by more than a factor of 2. Hence,
HotCalls are preferred over adding an additional worker thread,
when it more than double the throughput.

Power consumption: When the responder is idle, or underuti-
lized, it issues the PAUSE instruction in a loop, therefore it is not
expected to consume much power. If the responder is idle for rela-
tively long periods of time it can conserve power by waiting on a
conditional variable, releasing the core resources, as suggested in
Section 4.2. When the responder is busy, and the overall through-
put increases by more than a factor of 2 (as for all the applications
evaluated in Section 6) even if the power consumption doubles, the
power per given throughput unit is still more efficient when using
HotCalls.

5 SECURITY ANALYSIS
In order to assess to security implications of using HotCalls we
examine the modifications which may affect the trusted code running
inside the enclave.

Using shared plaintext memory for communication: Our Hot-
Calls technique for passing data structures between the enclave and
the untrusted code is no less secure than the SGX SDK’s mechanism.
HotCalls source code for marshalling data structures between the

enclave and the untrusted code is the same code used by the SDK’s
ecalls and ocalls implementation, generated by the edger8r tool. Any
manipulation possible on data, which was marshalled by HotCalls,
is also possible when using the SDK’s ecalls and ocalls.

Attacks on the data pointer: Any security breach possible via
manipulating the data pointer used by HotCalls is also possible on
the pointer passed by the SDK’s implementation of ecalls and ocalls.
For ecalls, the responder (inside the enclave) identifies the request
for a call, and passes the data pointer to the original function created
by the edger8r tool. From then on the source code is identical to the
default SDK implementation, including all security checks on the
pointer in untrusted memory, and the copying of relevant buffers by
using in or out modifiers (see Section 3.2.1).

In the case of ocalls, the HotOcall wrapper in the trusted code is
almost identical to the original ocall code generated by the edger8r
tool. The only difference is replacing the call to the SDK function
sgx_ocall, responsible for invoking the EEXIT instruction, with
code requesting a HotCall, similar to the “Request call” function
illustration in Figure 9.

Requesting a function via call_ID: The technique of setting a
function number in shared memory is also utilized by the SDK. The
“call_ID” in HotCalls is comparable to the “ocall_index” variable
used by the SDK. Any manipulation on “call_ID” is also possible
on the “ocall_index” passed by the SDK to the untrusted ocall. Such
manipulation to the “call_ID” or “ocall_index” will cause the un-
trusted code to execute a wrong function, hence no new vulnerability
is introduced.

Using the spin-lock located in shared memory: Tampering
with the synchronization provided by the spin-lock will either cause
a denial of service (DoS) due to a deadlock, which is out of the SGX
threat model or will cause multiple threads to access the same data in
plaintext memory at the same time. Similar to HotCalls, the SDK’s
ecalls and ocalls involve pointers in untrusted memory, which are
accessible to the adversary in the SGX threat model. Therefore, the
adversary can manipulate these pointers to cause multiple threads
to access the same memory simultaneously, whether the threads are
executing trusted or untrusted code.

6 EVALUATING HOTCALLS ON
APPLICATIONS

To evaluate the performance impact of SGX on complex software
we chose three applications: memcached, openVPN, and lighttpd.
Figures 10 and 11 show the throughput and latency of these applica-
tions in normal execution and when running inside an SGX enclave.
Each application, at its peak utilization, is performing hundreds of
thousands of Linux API calls, each second. Table 2 lists a break-
down of the most frequent API calls in each application, and the
execution time spent on facilitating the calls. Using HotCalls and the
No-Redundant-Zeroing approach we were able to reach a 2.6-3.7x
throughput boost, compared to the unoptimized implementation, and
reduce the average response latency by 62-74%.

6.1 Efficient Application Porting
SGX Enclaves shield the code running within them from the rest
of the system. Communication to and from the enclave is carried
out via defining edge functions (ecalls and ocalls). Previous work

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

Application
Frequent Calls

(Calls x1000 / second)

Total

Calls

Core

Time

Memcached
read(66.5), sendmsg(66.5)

RunEnclaveFucntion(66.5)
200K 42%

OpenVPN

poll(87), time(87), getpid(13.6),

write(30), recvfrom(30),

read(13.6) sendto(13.6)

275K 57%

Lighttpd

read(49),fcntl(25),

epoll_ctl(25), close(25),

setsockopt(25), __fxstat64(25)

inet_ntop(12),accept(12),

inet_addr(12),ioctl(12),

__open64_2(12), sendfile64(12)

shutdown(12),writev(12)

270K 56%

Table 2: Number of API calls (in thousands per second) in non-
optimized memcached, openVPN and lighttptd, running inside
a SGX secure-enclave. Each ocall, including both software and
hardware interfaces (see Section 3.3), takes roughly 8,300 cy-
cles (assuming a warm cache). On a 4 GHz core, the execution
time is thus Ncalls ·8,300 / (4 ·109), which is listed in Core Time
column.

[6, 9, 40] argued that it is desirable to port applications into an SGX
enclave as a whole, minimizing the number of code modifications.
Any change to production-grade software may introduce new bugs
and potentially new security vulnerabilities. We determined to take
a similar approach as the baseline SGX implementation of the appli-
cations under test. The main ecall was defined as simply calling the
application’s original main function. We used the makefile provided
by the SGX SDK [25] as a guideline for building the enclave shared
object. Any OS API call used by the application will result in an
ocall.

Identifying API calls: Any call to a function outside the code-
base results in an undefined reference error at link time. Examples
of such functions are fopen, fread, time, socket and so forth. Each
application under test had between 93-144 such undefined references.
For each function, it is required to generate a wrapper function that
will be executed inside the enclave, and an EDL declaration of an
ocall, describing the nature of the arguments (input, output, size of
buffers), and finally a landing function in the untrusted code which
will call the relevant OS API. We developed a framework to identify
the undefined references and generate the needed trusted/untrusted
wrapper code. As it is sometimes hard to infer programmatically
the input/output nature of an argument, and its size in memory,
our framework allows adding exceptions by hand. The wrapper
code allows adding counters that estimate the number of calls per
second of each function. A breakdown of the most frequent calls per
application is presented in Table 2.

Marshalling data structures: In HotCalls, only a void pointer is
transferred between the enclave and the application (and vice versa).
The edger8r tool provided by the SDK generates marshalling code
to pack/unpack parameters from a structure, perform the necessary
security checks, and copy buffers. Our framework automatically
extracts the marshalling code generated by the edger8r tool, to
generate wrapper code to be used with HotCalls.

Corner case API calls: Some API calls require special atten-
tion. A new thread creation with pthread_create eventually calls
a function inside the enclave, using a pointer provided to the call
in start_routine. If start_routine points to code residing inside the
enclave, this call will fail. Therefore, we created a new ecall edge
function RunEnclaveFunction, which receives a pointer to code in-
side the enclave and jumps to it, in the same way pthread_create
would.

The structures pthred_mutex_t, pthread_cond_t are used as syn-
chronization mechanisms. The SDK provides alternatives to these
structures: sgx_thred_mutex, sgx_thread_cond, that should be used
instead. The SDK also provides matching locking/unlocking and
waiting/signaling operations. Whenever these synchronization mech-
anisms were used, we replaced them with the SGX SDK alternatives.

6.2 Memcached
Memcached is a key-value RAM database. It is typically used as
a caching layer between web-servers and the back end database to
boost performance. Memcached is widely deployed: e.g., Facebook,
Zynga, Twitter, Youtube [33, 42]. As suggested by CryptDB [39], it
is desirable to protect the confidentiality and integrity of a database
by encrypting it. Completely porting the database application to
run within an SGX enclave offers similar security guarantees as
CryptDB, with minimal development effort.

A thorough workload analysis of deployed memcached instances
is provided in [8]. The majority of the requests are under 2KB for
the size of the requested value. As a caching layer, memcached
performance is measured by the number of requests handled per
second and the latency for replying to each request, as observed by
the requesting client.

We evaluated memcached version 1.4.31, on the same platform
described in Section 3. We tested the performance with memtier
benchmark [41], a tool developed by Redis Labs to evaluate mem-
cached performance. The benchmark used the binary protocol, the
ratio of SET:GET was set to 1:1, and the data size of the payload
was set to 2KB. A total of 4 million requests were issued, from
4 concurrent threads. We ran memcached with a single thread. To
avoid hindering the performance due to link-capacity we ran both
memcached and memtier-benchmark on the same machine - using
the loopback as the network interface. The original memcached
source was able to service, on average, 316,500 requests per second,
with average response latency of 0.63 milliseconds. Unoptimized
porting of memcached into the SGX enclave, as described in Sec-
tion 6.1, reduced the throughput to 66,500 requests per second, and
the average response latency to 2.97 milliseconds, a 79% reduction
in serviced requests and a 4.7x increase in latency.

Porting memcached to run inside an enclave exposed 93 external
API references. Table 2 provides a breakdown of the most frequent
API calls: read and sendmsg. On average read and sendmsg are
called from within the enclave 66,500 times per second. Memcached
utilizes libevent to wait on a socket, and receives a callback when new
data is available. Since the callback function is inside the enclave, it
requires invoking an ecall, RunEnclaveFunction. RunEnclaveFunc-
tion is called on average also 66,500 times per second. To ensure that
the counters do not interfere with the performance measurement, we

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

OpenVPN memcached lighttpd
0

0.2

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

866

309

694

823

(MBit/Sec)

317

66

162
185

(K Ops/Sec)

53.4

12.1

40.4
44.8

(K Requests/Sec)

No SGX
SDK default calls
HotCalls
HotCalls+No zeroing

Figure 10: Optimizing throughput with HotCalls and No-
Redundant-Zeroing. The measurements are normalized to run-
ning without SGX. Memcached, by nature, is a memory-
intensive application, and therefore optimization is limited by
the performance of the memory encryption engine.

repeated the benchmark with the counting code removed. Measured
results were similar.

There are total of 199,500 edge calls per second. As ecall requires
at least 8,600 cycles, and ocall requires at least 8,200 cycles, this
sums up to over 1.7 billion cycles per second spent merely on trans-
ferring control between SGX and untrusted code, not accounting
for memory transfers. On a 4GHz core, this is 42% of the core time
spent on SGX context switching.

Results: Utilizing HotCalls for read, sendmsg, and RunEnclave-
Function increases the throughput to 162,000 requests serviced per
second, and reduces the response latency to 1.23 milliseconds, a
2.4X increase in throughput and 58% decrease in latency. Figures 10
and 11 depicts HotCalls impact on throughput and latency. The read
API call is receiving a buffer from the network, therefore using the
out category of ocalls. Removing the redundant zeroing performed
by the SGX generated code increased throughput to 185,000 requests
per second, and reduced response latency to 1.08 milliseconds. This
is 2.8x increase compared to SGX SDK calls, and a 64% reduction
in latency.

Fundamental limitation: Even with HotCalls, the throughput
is still only around 60% of the non-SGX baseline. Memcached is
by nature memory intensive. The memory accesses are uniform
across the memory-stored database, leading to poor spatial locality,
and therefore suffer from many cache misses. As suggested by the
memory access microbenchmark and mcf benchmark in Section 3,
memory access latency of 2KB buffers may be slowed down up to
55%, potentially causing throughput degradation up to 35%, just
accounting for memory access overhead. This is inherent to using
encrypted memory. Recent work has suggested a speculative loading
mechanism to improve the performance of encrypted memory [22],
and may improve the performance of memory intensive applications
such as memcached.

6.3 OpenVPN
openVPN [38] is a well known widely used open-source Virtual
Private Network (VPN) solution that provides secure encrypted
tunnels between two endpoints connected to the Internet. openVPN

OpenVPN memcached lighttpd
0

1

2

3

4

5

L
a

te
n

c
y
 (

n
o

rm
a

liz
e

d
)

1.43

4.58

1.871.75
0.63

2.97

1.23
1.08

1.52

8.25

2.4
2.13

No SGX
SDK default calls
HotCalls
HotCalls+No zeroing

Figure 11: Optimizing latency with HotCalls and No-
Redundant-Zeroing. The values above the bars are in millisec-
onds: For openVPN the values are the average ping round-trip
time. For memcached and lighttp the values are the server’s av-
erage response latency.

utilizes OpenSSL library [37] as the cryptographic implementation.
Compromising the secret keys used by openVPN compromises the
security of the tunnel, potentially allowing an outsider to inspect
tunnel communication or inject traffic. Therefore, it may be desirable
to port openVPN into an SGX enclave to protect encryption and
authentication keys.

We evaluated openVPN version 2.3.12, using OpenSSL version
1.0.2. We created a secure tunnel between the SGX machine speci-
fied in Section 3, and a desktop machine Intel NUC 5i7RYH with
16 GB of DDR3, running Ubuntu Desktop 16.04 LTS, connected in
a 1 Gbit/sec link. To evaluate the throughput, we used iperf3 [30].
We ran iperf3 for 60 seconds to estimate the actual maximum TCP
bandwidth between the desktop and the SGX machine and found it
to be 935 Mbit /sec. We then ran iperf3 over the openVPN tunnel
(without modification) and measured a TCP bandwidth of 866 Mbit
/sec, showing that the Ethernet link is not fully saturated. Unopti-
mized porting of openVPN into the SGX enclave, as described in
Section 6.1, reduced the TCP bandwidth to 309 Mbit/sec, a 64%
decrease. We estimated the round trip latency using a flood ping,
sending 1 million requests, with preload of 100 requests before wait-
ing for the response. For native openVPN, the average round trip
latency was 1.427 milliseconds. The SGX implementation increased
the average latency to 4.579 milliseconds, a 3.2x increase.

Porting openVPN to run inside an enclave exposed 131 external
API references. Table 2 provides a breakdown of the most frequent
API calls, totaling roughly 275,000 ocalls per second, wasting 57%
of the core time merely on SGX context switches. A surprisingly
frequent API call is getpid. This call is invoked by OpenSSL when-
ever a cryptographic context is called. Other frequent API calls are
inet_ntop, inet_addr. These are utility functions, which could be im-
plemented inside the secure-enclave to reduce the number of ocalls
and improve performance.

Results: Utilizing HotCalls for all seven frequent API calls, in-
creases the bandwidth to 694 Mbit/sec, and reduces the round trip
latency to 1.873 milliseconds, a 2.25x increase in bandwidth and
60% decrease in latency. Results are depicted in Figures 10 and
11. The calls recvfrom and read receive a buffer from the untrusted
code, therefore using the SDK out category of ocalls. Removing the

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada O. Weisse et al.

redundant zeroing performed by the SGX generated code increases
bandwidth to 823 Mbit/sec and reduces the round trip latency to
1.747 milliseconds: a 2.66x bandwidth increase and 62% decrease
in latency.

6.4 lighttpd
lighttpd [32] is an open source, light-weight web server optimized for
speed and serving many concurrent requests. It runs single-threaded
in a single process. We evaluated lighttpd version 1.4.41. We evalu-
ated its performance using http_load [1]. The measurement consisted
of 100 concurrent clients connections, fetching a total of 1 million
20 KB pages. The connections were over the local loopback to max-
imize available link bandwidth. Unmodified lighttpd was able to
serve an average of 53,400 pages per second, with average response
latency of 1.52 milliseconds.

Unoptimized porting of lighttpd into SGX enclave, as described
in Section 6.1, reduces the number of requests per second to 12,100,
and increases the response latency to 8.25 milliseconds, a 77% de-
crease in throughput and 5.4x increase in latency. Porting lighttpd to
run within an enclave exposed 144 external API references. Table 2
gives a breakdown of the most frequent API calls, totaling in roughly
270,000 ocalls per second, costing 56% of the core time. The API
calls inet_ntop, and inet_addr don’t require OS involvement and can
be implemented inside the enclave, reducing by 9% the number of
ocalls. The rest of the calls, however, do require access to external
OS resources, and can not be optimized into the enclave.

Results: Utilizing HotCalls for all 14 frequent API calls, increases
the throughput to 40,400 requests per second and reduces the re-
sponse latency to 2.40 milliseconds, a 3.3x increase in throughput
and 70% decrease in latency. Results are depicted in Figures 10 and
11. The calls read and inet_ntop receive a buffer from the untrusted
code, therefore using the SDK out category of ocalls. Removing
the redundant zeroing performed by the SGX generated-code in-
creases throughput to 44,800 requests per second, and reduced the
response latency to 2.13 milliseconds, a 3.7x increase in throughput
and 74% decrease in response latency compared to an unoptimized
SGX implementation.

7 RELATED WORK
SGX related sources: The SGX official documentation is in Intel’s
Software Developer Manual [28]. Explanation of the technology
can be found in “Intel SGX explained” [13], and in a presentation
given at Black Hat [2]. None of these documents provide specific
measurements for the various operations supported by SGX, nor
suggest optimization strategies.
Similar technologies: Sanctum [14] is an alternative secure execu-
tion technology for the RISC-V [7, 46] open processor. ARM Trust-
zone is ARM’s secure execution solution [3], allowing co-existence
of a secure world OS, in parallel to the normal world OS to manage
sensitive data and operations. SecureME [12] introduced a potential
architectural support for protecting user space applications’ memory
from other applications and privileged code such as the OS, VMM
or SMM code. Overshadow [11] proposed a VMM enforced mecha-
nism to offer similar protection, but only against other applications
and the OS.

Previous work on SGX: Drawbridge [40] is a solution for mov-
ing most of the OS operations into user space to improve secu-
rity. Haven [9] makes use of Drawbridge in order to port entire
applications with most of their OS-support needs inside an SGX
enclave. VC3 [44] is an implementation of map-reduce across mul-
tiple servers, running on SGX secure-enclaves. SCONE [6] shows
how to run docker containers inside a secure-enclave, and suggests
techniques to improve the container performance. These solutions
are very effective but are mainly applicable to applications running
inside docker. Ryoan [24] offers a framework that allows one en-
clave to trust another enclave from a different provider, to receive
secret data, guaranteeing that it would not be leaked. A possible
side-channel attack against SGX is described in [48], exploiting
the leakage of memory access patterns in page granularity, i.e., 4
KB. Although all the above mention performance implications of
using SGX secure-enclaves, no specific measurement of operations
is provided. Therefore, it was not previously clear what optimization
strategies should be made to improve performance when developing
enclaves.

Related optimization work: The approach of polling for events,
instead of being called, was suggested for use with hardware in
Linux NAPI [43], to minimize the need for a context switch to inter-
rupt handlers. In the virtualization context, this approach has been
investigated in [31, 43] as a way to accelerate accessing hardware or
virtualized hardware, saving the costly context switch between guest
OS and hypervisor. The implementation of HotCalls, suggested in
this paper, is inspired by these approaches.

8 CONCLUSION
Identifying the bottlenecks of Intel’s SGX technology is an important
step to make secure computation practical. Leveraging the insights
from the microbenchmarks allows developers to focus the optimiza-
tion effort effectively. HotCalls is an alternative calling interface for
SGX secure-enclaves, which optimizes the calling latency by a factor
of 13-27x. Using HotCalls, the throughput of common applications
can be boosted by up to 3.7x, and the response latency can be re-
duced by up to 74%. In order for security-enhancing technologies to
be prevalent, they need to be practical. The best practices discussed
in this work and HotCalls are an important step in making SGX both
a secure and a practical solution.

ACKNOWLEDGEMENTS
This work was supported in part by C-FAR, one of the six STARnet
Centers, sponsored by MARCO and DARPA. The authors would
also like to acknowledge Matthew Hicks for his suggestions while
shaping the ideas introduced in this work, and Jeremy Erickson for
his assistance and feedback.

REFERENCES
[1] http_load - multiprocessing http test client. http://acme.com/software/http_load/.
[2] SGX Secure Enclaves in Practice: Security and Crypto Re-

view. Black Hat. https://www.blackhat.com/docs/us-16/materials/
us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-\
Crypto-Review.pdf.

[3] Tiago Alves and Don Felton. 2004. TrustZone: Integrated Hardware and Software
Security-Enabling Trusted Computing in Embedded Systems.

[4] Nikos Anastopoulos and Nectarios Koziris. 2008. Facilitating Efficient Synchro-
nization of Asymmetric Threads on Hyper-Threaded Processors. In Proc. of IEEE
IPDPS.

http://acme.com/software/http_load/
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-\Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-\Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-\Crypto-Review.pdf

Regaining Lost Cycles with HotCalls ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
Technology For CPU Based Attestation and sealing. In Proc. of HASP.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, and others. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proc. of OSDI.

[7] Krste Asanović and David A Patterson. 2014. Instruction Sets Should be Free:
The Case for RISC-V. Technical Report. University of California at Berkeley,
http://www. eecs. berkeley. edu/Pubs/TechRpts/2014/EECS-2014-146. pdf.

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. In Proc. of ACM
SIGMETRICS Performance Evaluation Review.

[9] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding Applica-
tions from an Untrusted Cloud with Haven. In Proc. of ACM TOCS.

[10] Stephen Checkoway and Hovav Shacham. 2013. Iago attacks: Why the System
Call API is a Bad Untrusted RPC Interface. In Proc. of ACM SIGARCH Computer
Architecture News.

[11] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrahmanyam, Carl
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan Ports. 2008. Overshadow: A
Virtualization-Based Approach to Retrofitting Protection in Commodity Operating
Systems. In Proc. of ACM SIGARCH Computer Architecture News.

[12] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic. 2011.
SecureME: a Hardware-Software Approach to Full System Security. In Proc. of
ACM ICS.

[13] Victor Costan and Srinivas Devadas. Intel SGX explained. Technical Report. Cryp-
tology ePrint Archive, Report 2016/086, 2016. https://eprint. iacr. org/2016/086.

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In Proc. of USENIX Security.

[15] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios Kolovent-
zos. 2016. ARM Virtualization: Performance and Architectural Implications. In
Proc. of ISCA.

[16] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and
others. The Matter of HeartBleed. In Proc. of ACM IMC.

[17] Shawn Embleton, Sherri Sparks, and Cliff C Zou. 2013. SMM Rootkits: A New
Breed of OS Independent Malware. In Security and Communication Networks.
Wiley Online Library.

[18] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. 2008.
Intel AVX: New frontiers in performance improvements and energy efficiency.

[19] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose
Processors. Intel Corporation.

[20] J Alex Halderman, Seth Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A Calandrino, Ariel Feldman, Jacob Appelbaum, and Edward Felten. 2009.
Lest We Remember: Cold-Boot Attacks on Encryption Keys. In Communications
of the ACM.

[21] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. In Proc. of ACM
SIGARCH Computer Architecture News.

[22] Andrew Douglas Hilton, BC Lee, and TS Lehman. 2016. PoisonIvy: Safe Specu-
lation for Secure Memory. In Proc. of ACM MICRO.

[23] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Proc. of HASP.

[24] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
Proc. of OSDI.

[25] Intel. Intel SGX Software Development Kit (SDK). Intel. https://software.intel.
com/en-us/sgx-sdk.

[26] Intel. Intel Software Guard Extensions SDK for Linux OS. In-
tel. https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_
reference_for_linux_os_pdf.pdf.

[27] Intel. Intel Software Guard Extensions SDK for Windows OS. In-
tel. https://software.intel.com/sites/default/files/managed/b4/cf/
Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf.

[28] Intel. Software Developer Manual, chapters 37-43. Intel. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[29] Intel. Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices. Intel. https://software.intel.com/sites/default/files/managed/ac/40/2016%
20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf.

[30] Iperf. A tool for active measurements of the maximum achievable bandwidth on
IP networks. Iperf. https://iperf.fr/.

[31] Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev. 2007. Re-
architecting VMMs for Multicore Systems: The Sidecore Approach. In Proc. of
WIOSCA. Citeseer.

[32] lighttpd. An open-source web server optimized for speed-critical environments.
lighttpd. https://www.lighttpd.net/.

[33] Kevin Lim, David Meisner, Ali Saidi, Parthasarathy Ranganathan, and Thomas
Wenisch. 2013. Thin Servers With Smart Pipes: Designing SoC Accelerators for
Memcached. In Proc. of ACM SIGARCH Computer Architecture News.

[34] Jiuxing Liu and Bulent Abali. 2009. Virtualization polling engine (VPE): Using
Dedicated CPU Cores to Accelerate I/O Virtualization. In Proc. of ACM ICS.

[35] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution.. In Proc. of HASP.

[36] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. 2006. Intel
Virtualization Technology: Hardware Support for Efficient Processor Virtualiza-
tion.. In Intel Technology Journal.

[37] OpenSSL. Cryptography and SSL/TLS Toolkit. OpenSSL. https://www.openssl.
org/.

[38] OpenVPN. An open source SSL VPN solution. OpenVPN. https://openvpn.net/.
[39] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.

2011. CryptDB: Protecting Confidentiality with Encrypted Query Processing. In
Proc. of SOSP.

[40] Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C
Hunt. 2011. Rethinking the Library OS from the Top Down. In Proc. of ACM
SIGPLAN.

[41] Redis Labs. memtier_benchmark: A High-Throughput Benchmarking Tool for
Redis & Memcached. Redis Labs. https://https://redislabs.com/blog/memtier_
benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached#
.WBz0PNzHXeA.

[42] Paul Saab. 2008. Scaling Memcached at Facebook.
[43] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. 2001. Beyond Softnet.

In Proc. of USENIX ALSC.
[44] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustwor-
thy Data Analytics in the Cloud Using SGX. In Proc. of IEEE S&P.

[45] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In Proc. of OSDI.

[46] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The RISC-V Instruction Set Manual, Volume I: Base user-level ISA. EECS
Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 (2011).

[47] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM Memory via Intel
CPU Cache Poisoning. In Invisible Things Lab.

[48] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic Side Channels for Untrusted Operating Systems. In Proc.
of IEEE S&P.

[49] Wenting Zheng, Ankur Dave, Jethro Beekman, Raluca Ada Popa, Joseph Gon-
zalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In Proc. of NSDI.

https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/sgx-sdk
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://iperf.fr/
https://www.lighttpd.net/
https://www.openssl.org/
https://www.openssl.org/
https://openvpn.net/
https://https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached##.WBz0PNzHXeA
https://https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached##.WBz0PNzHXeA
https://https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached##.WBz0PNzHXeA

	Abstract
	1 Introduction
	2 SGX - Background
	2.1 Application-Enclave Interaction

	3 Overhead of Fundamental Operations
	3.1 Experimental Setup
	3.2 Measuring Ecalls Overhead
	3.3 Measuring Ocalls Overhead
	3.4 Measuring Memory Access Overhead
	3.5 Lessons Learned

	4 HotCalls: An Optimized SGX Interface
	4.1 HotCalls Architecture
	4.2 Practical Considerations
	4.3 Empirical Evaluation of HotCalls
	4.4 Implications of Using an Additional Core

	5 Security Analysis
	6 Evaluating HotCalls on Applications
	6.1 Efficient Application Porting
	6.2 Memcached
	6.3 OpenVPN
	6.4 lighttpd

	7 Related Work
	8 Conclusion
	References

