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ABSTRACT

A plethora of major security incidents—in which personal identifiers belonging to

hundreds of millions of users were stolen—demonstrates the importance of improving the

security of cloud systems. To increase security in the cloud, where resource sharing is the

norm, we need to rethink existing approaches.

This thesis analyzes the practicality and security of trusted execution technologies as the

cornerstone of secure software systems, to better protect user data and privacy.

Trusted Execution Environments (TEE), such as Intel SGX, have the potential to min-

imize the Trusted Computing Base (TCB), but they also introduce many challenges for

adoption. Among these challenges are their significant impact on application performance

and substantial effort required to migrate legacy systems to run on these secure execution

technologies. Other challenges include managing trustworthy state across a distributed

system and ensuring that individual machines are resilient to micro-architectural attacks.

In this thesis, I first characterize the performance bottlenecks imposed by SGX and

suggest optimization strategies. I then address two main adoption challenges for existing

applications: managing permissions across a distributed system and scaling the SGX mecha-

nism for proving authenticity and integrity. I then analyze the resilience of trusted execution

technologies to micro-architectural attacks on speculative execution, which put cloud in-

frastructure at risk. This analysis revealed a devastating security flaw in Intel processors,

known as Foreshadow/L1TF. Finally, I propose a new architectural design for out-of-order

processors that defeats all known speculative execution attacks.

To characterize the performance bottlenecks, unique to Intel SGX TEE technology, I

devise a set of microbenchmarks. These benchmarks shed light on the impact of isolating
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trusted code inside an enclave—SGX secure execution context—and the overhead of using

encrypted memory, showing that SGX may degrade performance by up to 79%. I then

suggest an optimization strategy, HotCalls, that alleviates the performance bottlenecks

created by SGX. HotCalls boosts throughput by 2.6-3.7x, and reduces application latency

by 62-74%. Intel adopted the HotCalls concept into their SDK.

Improving raw performance is only the first step in realizing a practical distributed secure

system. Specifically, In this part of my thesis I present two frameworks: TEE-SERVICE

and SovereignTEE. TEE-SERVICE enables managing access permissions on a distributed

secure system. SovereignTEE shifts trust management from the hardware vendor (Intel) to

the cloud provider while maintaining SGX security guarantees.

In the next part of this thesis, I show how all three security pillars of SGX TEE can be

broken using speculative execution attacks. When the first speculative execution attacks—

Meltdown and Spectre—became public knowledge, the security community hypothesized

that Intel SGX cannot be penetrated using these attacks. However, my work, as acknowl-

edged by Intel and currently known under the name of “L1 Terminal Fault”, shows how

a malicious SGX enclave can break all three security properties provided by SGX TEE:

confidentiality, secure storage, and proof of integrity.

Finally, in the last part of this thesis, I present NDA: a new architecture design that

defeats all known variants of speculative execution attacks. Existing mitigations for Spectre

and Meltdown attacks focus on ad-hoc mitigations to block specific mechanisms abused by

the currently known exploits. To avoid the ceaseless arms race of blocking one attack after

the other, I propose NDA, a technique for restricting speculative data propagation. I describe

a design space of NDA variants that differ in the constraints they place on the dynamic

scheduling and the classes of speculative execution attacks they prevent.
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CHAPTER I

Introduction

Enterprises are increasingly shifting services that manage sensitive data, such as med-

ical [22, 31, 93, 189] and financial [21, 89, 94] records, from on-premise platforms to

public clouds in order to reduce management and provisioning costs. However, the shift

to public clouds entails substantial risks. Cloud providers colocate virtual machines from

mutually untrusting parties on the same hardware; a flaw in the infrastructure can easily

lead to data compromise [67, 71, 245, 262]. Moreover, service owners—the cloud direct

customers—must trust the cloud operator itself; public reports contain numerous examples

where malicious actors [57, 68, 233, 244, 258] or legal action [20, 92, 97, 191] have com-

promised private data. As such, despite potential cost savings, many enterprises remain

hesitant to use public clouds [33, 76, 192, 229, 259, 274].

The current trusted computing base (TCB) for public cloud services is too large [74, 75,

80, 110, 230, 235, 283] and includes essentially the entire software stack: a vulnerability in

either the application, the OS, or the hypervisor can allow an attacker to access sensitive

data and violate security requirements. Moreover, a malicious employee at the data center

site may mount physical attacks [10], circumventing any software protection.
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1.1 Trusted Execution Environments

Trusted Execution Environment (TEE) technologies, such as Intel SGX [29, 113, 183],

AMD SEV [1, 26], and ARM TrustZone [19], offer a practical approach to minimizing the

TCB. Instead of requiring external hardware, TEEs extend general-purpose processors with

mechanisms to create a secure context, isolated from potentially malicious applications, OS,

and hypervisor. This solution provides the benefits of hardware-backed security with the

performance of a general-purpose processor. The TEE secure context provides confidential-

ity and integrity guarantees enforced in hardware, so that even the hardware owner (e.g., the

cloud provider) cannot falsify the integrity of the computation or exfiltrate private data.

In short, TEEs allow a cloud provider to resell compute and storage within a “black

box” that neither the service provider nor other co-scheduled tenants can open. I focus

my study on Intel SGX, which is the most prominent production-grade TEE technology

for server-class processors. Despite recent attacks on Intel SGX1 [121, 269, 282]—which

were immediately patched [25, 95, 187, 266]—SGX is the most prominent TEE technology

adopted by commercial companies [10, 30, 82, 116, 206].

In the first three chapters of this thesis (II-IV), I address the key challenges for enabling

trustworthy secure cloud computing, including performance impact, the practicality of

deployment, and security. While TEEs have the potential to minimize the TCB they introduce

a major impact on performance and substantially complicate the service deployment process.

1.2 The Impact of Speculative Execution Attacks on TEEs

Modern processors are vulnerable to devastating new speculative execution attacks, such

as Meltdown [172] and Spectre [155]. In the chapter V, I analyze the vulnerability of Intel

TEE, SGX, to speculative execution attacks, similar to Meltdown [172] and Spectre [155].

As stated by Intel, SGX does not protect against micro-architectural side channel attacks.

1Arguably, the most devastating attack on SGX is part of this thesis, described in chapter V.
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Such side channel attacks exploit subtle timing variations resulting from contention on CPU

micro-architectural resources to extract otherwise-unavailable secret information [221, 42,

217, 265, 292, 18, 84, 146, 85, 222, 104, 296, 291]. Recent works, Meltdown [172] and

Spectre [155], combine micro-architectural attacks with speculative execution, allowing the

attacker to read the entire address space of victim processes (if they contain vulnerable code)

or of the operating system [124].

Much less is known, however, about the susceptibility of “perfect” SGX enclaves—that

do not contain existing side channel vulnerabilities or other coding bugs— to side channel

attacks. Thus, in my research, I ask: Can an adversary extract secret data from an SGX

enclave’s address space even when the code running in that enclave does not itself have any

security vulnerabilities?

Next, I observe that SGX’s integrity guarantees in the presence of side channels have

received almost no attention from researchers. Thus, I ask, what are the implications of

side channel attacks on the SGX integrity guarantees? Can an adversary make an enclave

operate on corrupted input data or corrupted state?

Finally, given the importance of SGX remote attestation in establishing trust in the SGX

ecosystem, I ask: Can a side channel adversary erode the trust in SGX remote attestation?

If so, what will it take to mount such an attack?

I answer all three questions in the affirmative. I answer the first question by presenting

several new attacks that compromise SGX’s condentiality guarantees. I then use my attacks

on SGX’s condentiality properties to break SGX’s integrity guarantees, thereby answering

the second question. Finally, I use these attacks to recover the machines private attestation

keys, thereby breaking SGX’s attestation protocol and answering the third question.

1.3 Rethinking Out-of-Order Execution

In the last chapter of this thesis I discucss NDA: a new architecture design which defeats

all known variants of speculative execution attacks. Speculative execution attacks [173, 154,
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269, 282, 242, 256, 153, 124, 120, 176, 156] exploit micro-architectural behavior and side

channels to exfiltrate sensitive information from a system. Unlike classical software exploits

that modify and observe only architectural state (such as registers and memory), speculative

execution attacks have demonstrated that attackers can retrieve secrets by controlling and

observing micro-architectural state (e.g., the cache) during speculative wrong-path execution.

Existing software and hardware defenses are insufficient. First, Software mitigations

are not applicable to existing binaries. Second, while hardware defenses have the potential

to obviate the need to modify existing software, the currently deployed mechanisms are

blocking only attack-specific mechanisms—which are not fundamental to speculative execu-

tion attacks. For example, STIBP [141] prevents the attacker from steering execution by

polluting the BTB, but can be circumvented by other attack techniques [176, 156]. Finally,

other proposed hardware mitigations [288, 150] block only a specific covert channel and

recent work already showed other covert channels exist [242].

In this last chapter, I introduce NDA and show how it fundamentally defeats speculative

execution attacks. I will analyze the performance impact of this new design when mitigating

different classes of speculative execution attacks.
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CHAPTER II

Hot Calls: A Fast Interface for SGX Secure Enclaves

2.1 Introduction

Cloud computing allows lowering the cost of computation and storage, outsourcing

the acquisition and maintenance to a third party. Using hardware and software under the

control of a third party implies substantial trust: trust that the service provider will not snoop

on the data on its servers and will not tamper with the execution flow. Even if the cloud

provider can be trusted not to actively snoop or tamper with processed data, users must

also trust in the operating system, the virtual machine manager, and the firmware (BIOS

& System Management Mode code - SMM). A compromise in the security of any of these

layers, by means of remote attack or rogue employee tampering with the hardware, leads to

compromising the information and the execution on the cloud.

In 2015, Intel released the Skylake micro-architecture, the first x86 production processor

featuring a secure execution technology - Software Guard Extensions (SGX) [183, 113, 29].

This technology allows secure execution in user-space (ring 3) in a container called a secure-

enclave, which is shielded from the OS, VMM, and SMM. Ideally, no vulnerability or

intentionally malicious code in any of these layers should compromise the confidentiality or

the integrity of the secure-enclave. No probing of physical buses outside the processor chip

should compromise the security, as the memory is encrypted as well.

Recent work [240, 40, 34, 115, 297] has proposed new frameworks for performing
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large-scale computations and for porting existing applications to secure-enclaves. Although

they provide qualitative discussion about the performance implications of running within an

SGX enclave, it remains unclear what specific operations may slow down execution, and by

how much. Such quantitative understanding is the cornerstone for constructing effective

optimization strategies when developing secure-enclaves.

In this chapter I present a quantitative performance evaluation of SGX, quantifying

the overhead of transferring control to and from secure-enclaves and encrypted memory

I/O. First, I introduce a taxonomy of the operations involved in using the SGX framework

and their costs in machine clock cycles. Based on this analysis, I propose a performance-

boosting alternative interface to interact with secure-enclaves. This mechanism is adopted by

Intel and integrated into SGX’s SDK as switchless calls [263]. My research found that the

overhead of calling a secure-enclave function is between 8,600 and 17,000 cycles (depending

on cache state), compared to 150 cycles for a regular OS syscall [252], and compared to

1,300 cycles for a hyper-call in a KVM virtualization solution [72]. I also found that the

mechanism allowing secure code to interact with the application or OS outside the enclave

incurs between 8,200 and 17,000 overhead cycles (depending on cache state). This is a

54x-113x degradation in performance compared to regular OS calls.

I devise and evaluate several microbenchmarks to estimate the cost of transferring

buffers to and from enclaves. While [107] suggests that the Memory Encryption Engine

(MEE) adds no more than 12% overhead to the benchmark execution, I found that for the

microbenchmarks encryption/decryption may add up to 102% increase in memory access

time. On the mcf and libquantum benchmarks from SPEC 2006 [111], the slowdown was

55% and 420%, respectively.

The overhead of SGX-related calls becomes a significant bottleneck in applications with

high system-call frequency. For instance, a database application serving 200,000 requests

per second (e.g., memcached, as evaluated in Section 2.6.2) requires at least 200,000 system

calls to transfer responses through the network. According to my measurements, each call
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consumes at least 8,200 cycles, totaling 1,640 million cycles. On a 4 GHz core, this amounts

to 41% of the core time spent on merely facilitating the calls, without doing any actual

work. My evaluation of non-trivial applications in Section 2.6, shows that this is not just a

hypothetical problem.

Identifying that context switches used for facilitating system calls are a major bottleneck

in SGX applications, I design and implement HotCalls - an alternative interface for calling

enclave functions and requesting system calls by the enclave. HotCalls are based on a spin-

lock synchronization mechanism, and provide more than an order of magnitude speedup.

Compared to the standard SGX SDK [128] framework, HotCalls cost only 620 cycles per

system-call in most cases, a 13-27x improvement.

I evaluated the performance of three non-trivial applications within SGX: openVPN

(encrypted tunnel), memcached (memory based database), and lighttpd (fast HTTP server),

using a straightforward approach to port them into SGX secure-enclaves. I show that, using

HotCalls, it is possible to improve throughput by 2.6-3.7x and reduce the applications’

response latency by 62-74%.

To summarize, in this chapter I present the following contributions:

• I identify and analyze fundamental operations in SGX technology that have major

performance implications. I provide the first comprehensive evaluation of the latency

of each such operation, by designing and running a set of microbenchmarks. Based on

the microbenchmarks’ results, I offer best practices for using SGX when performance

is just as important as security.

• Leveraging the insights from the microbenchmarks, I design and implement a new

interface to SGX, HotCalls, for communication between secure-enclaves and untrusted

code. HotCalls are 13-27x faster than the existing mechanism provided by the SGX

SDK.

• I evaluate the benefit of HotCalls on widely used applications: openVPN, memcached,

and lighttpd, showing that the throughput of these applications can be improved by a
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factor of 2.6-3.7x and the response latency can be reduced by 62-74%.

2.2 SGX - Background

With the 6th Generation Intel Core processors, Skylake, Intel introduced the Software

Guard Extensions (SGX) instruction set that enables the use of a secure execution environ-

ment [183, 113, 29]. Similar to ARM TrustZone [19] secure world, SGX allows creating

a secure execution context, called a secure-enclave, protected from the operating system

and other user applications. Unlike the secure world in ARM TrustZone, the secure context

created by SGX has only user-level privileges, and each user application may create several

distinct secure-enclaves. A secure-enclave is a reverse sandbox - it protects the user-level

software from being compromised by the environment: the operating system, the virtual

machine manager, the BIOS (via SMM), and the hardware surrounding the CPU chip. Any

of these may be malicious (like adversary OS Iago attacks [58], or hardware cold boot

attacks [110]) or compromised (an OS, VMM, or SMM vulnerability [75, 283]). SGX

allows clients to securely run software on untrusted servers maintained by a third party such

as Amazon cloud computing, Microsoft Azure, or other cloud computing providers.

Guaranteeing confidentiality and integrity of execution on a remote third party server

is not trivial. The cloud provider has inherent access to the hardware (memory buses,

BIOS image) and the virtual machine management software (VMM), allowing the provider

to eavesdrop on the memory contents and the execution flow of all software running on

its servers. A security breach may also be introduced by a rogue employee in the cloud

company, modifying the BIOS image or patching the VMM software. SGX allows running

software operating on secret data in the cloud, without compromising its security. Ideally, it

should not be possible for the cloud provider to affect the execution flow of the software, or

inspect the secret data being processed, beyond the impact of a potential denial of service

attack. SGX secure-enclaves may be used to implement secure databases, software using a

secret key to encrypt/decrypt data, or other services processing sensitive data while running
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on hardware or software under the control of a third party.

The technical details of SGX instructions are detailed in the Software Developer Manual

[137]. At boot time, the BIOS defines an area in memory called the Enclave Page Cache

(EPC). This is part of the Processor Reserved Memory (PRM) area, which cannot be

accessed by any software, regardless of its privileges. The EPC is encrypted by the Memory

Encryption Engine (MEE) [107] residing on the processor die. Every processor has two

master secrets saved as fused keys, set uniquely at manufacturing time for each individual

processor. The first master secret is used to derive memory encryption keys and it is not kept

in Intel’s records. The second master secret is used to derive a public-private authentication

pair, used for attestation, and it is stored in Intel’s database. The MEE protects against

hardware attacks, trying to snoop on the data when it is in transit to and from memory. The

MEE also provides integrity protection, preventing rollback attacks, and protects against

malicious modification of the linear-to-physical mapping by a malicious OS or VMM.

The secure context is created by initializing a secure-enclave using the ECREATE 1

instruction. Memory pages containing code and data are copied into the enclave’s encrypted

memory by invoking the EADD and EEXTEND instructions. This code is referred to as the

trusted code. The pages added to the enclave are hashed to generate an enclave measurement.

After all the trusted code and data are transferred into the enclave, the measurement is

finalized by invoking EINIT. During the attestation process [138], the CPU uses the relevant

master secret to sign the measurement and generate a report. The report is passed to a remote

client (running on a trusted machine), which then contacts Intel’s servers to verify that the

signature was produced by a genuine Intel processor. The remote client can then provision

secret data to be processed by the enclave via a secure channel that is created as part of the

attestation process. The interested reader may refer to [69] for additional information.

1SGX supports only two instructions: ENCLU and ENCLS. All operations such as ECREATE, EADD,
EINIT, etc. are considered leaf functions of ENCLU or ENCLS, but are referred to as simply instructions for
clarity.
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Enclave –
Trusted code

Application –
Untrusted code

Plaintext shared memory Encrypted memory

ocall

ecall

• Can access encrypted and
plain text memory 

• No access to system calls

• Can only access 
plain text memory

• Can call system API 
functions, e.g., fread, 
fwrite, time, etc. 

Figure 2.1: Interaction between the application and the secure-enclave: control is transferred to the
enclave via ecall; requests for OS API calls are processed via ocalls.

2.2.1 Application-Enclave Interaction

Entering the enclave: Figure 2.1 illustrates the communication mechanisms between

the application and the secure-enclave. After the secure-enclave is initialized, the only way

for the untrusted code (outside the enclave) to start executing the trusted code (inside the

enclave) is by invoking the EENTER instruction. EENTER performs the context switch into

the enclave, saving the state of the untrusted code and restoring the last known state of the

trusted code. This context switch is conceptually similar to VMENTER and VMEXIT used

for virtual machine context switches in Intel’s VTX technology [196]. To ease development

of secure-enclaves, Intel provides wrapper code, called ecall (for entry call), to perform the

preparation of the environment and invoke the EENTER instruction [131, 132].

Accessing external resources: Because the enclave is trusted code running with user-

level privileges, i.e., ring 3, it has no access to hardware or other OS resources. In order to

gain access to external resources, such as the file system, network, or clock, the enclave

must exit to the untrusted code. It can do so via the EEXIT instruction. EEXIT performs the

reverse context switch and switches back to the untrusted code. The wrapper code to do so

is called ocall (for out call).

Declaring edge calls: ecalls and ocalls are considered edge functions, as they cause

execution to cross security boundaries. The functions’ parameters need to be marshalled
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# Micro-benchmark Description Median Latency (cycles)

1 Ecall (warm cache)
Calling a secure enclave function with no parameters,  and immediately returning. 

See Fig. 2a (solid line).
8,640

2
Ecall (cold cache) Same as above, the entire cache is flushed between  consecutive experiments. 

See Fig. 2a (dotted line).
14,170

3 Ecall buffer transfer
Calling a secure enclave function, passing 2KB buffer to / from / to&from

the enclave. Other buffer sizes are depicted in Fig. 4.
9,861/11,172/10,827

4 Ocall (warm cache) Exiting the secure enclave to execute an  untrusted call. See Fig 2b (solid line) 8,314

5 Ocall (cold cache)
Same as above, the entire cache is flushed between  consecutive experiments. 

See Fig. 2b (dotted line).
14,160

6 Ocall buffer transfer
Calling untrusted code, passing a 2KB buffer to / from / to&from the 

untrusted code. Other buffer sizes are depicted in Fig. 5.
9,252 / 11,418 / 9,801

7 Reading memory
Consecutively reading from a 2 KB buffer in encrypted/plaintext  memory in 

chunks of 64 bits. Other buffer sizes are depicted in Fig. 6.
1,124 / 727

8 Writing memory
Consecutively writing to a 2 KB buffer in encrypted/plaintext  memory, in 

chunks of 64 bits. Other buffer sizes are depicted in Fig. 7.
6,875 / 6,458

9 Cache load miss Reading 8 bytes (64 bits) from encrypted/plaintext memory 400 / 308

10 Cache store miss Writing 8 bytes (64 bits) to encrypted/plaintext 575 / 481

Table 2.1: Microbenchmarks targetting fundamental operations using SGX secure enclaves. Every
microbenchmark consists of 10 batches of 20,000 experiments, totalling 200,000 measurements. For
microbenchmarks involving memory operations, the relevant memory addresses are evicted from the
last-level cache prior to every single measurement.

and copied from encrypted memory to plaintext memory, and vice versa. For the boundary-

crossing to be secure, several security checks need to be performed on the call’s parameters,

particularly in the case that they are pointers. To ease the development of SGX enclaves,

Intel provides an edge function creator tool called edger8r (pronounced edgerator), to

automatically generate secure wrapper code of ecalls and ocalls. If some of the parameters

passed to the edge function are buffers, the specific wrapper code generated depends on

whether the buffers are used as input parameters, output, or both.

To automatically generate the ecalls and ocalls code, the programmer must use an SGX-

specific syntax to declare the edge functions in an EDL extension file. The declaration

includes the parameters each function receives, and their attribute: input, output or both. The

edger8r then parses the EDL file and generates wrapper glue code for ecalls and ocalls. The

glue code consists of two parts: trusted and untrusted. My proposed HotCalls framework

makes use of this generated code to facilitate the calls.
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2.3 Overhead of Fundamental Operations

Inspecting the SGX technical documentation raises several questions with respect to

performance:

What is the overhead of a secure context switch into the enclave, and out of it?

Every access to non-user-space resources, such as files, network, clock, etc. requires a

context switch to the untrusted code, to perform an OS API call. If the enclave code

performs such requests at high frequency, the time spent on the context switches will have a

drastic impact on the program’s performance. Table 2.1 describes the microbenchmarks we

evaluated. Microbenchmarks 1, 2, 4, and 5 specifically measure context switch latencies.

What is the cost of passing parameters and data between the application and the

secure-enclave? In order to service these requests, parameters and buffers must be trans-

ferred from the secure-enclave to untrusted execution, and vice-versa. Microbenchmarks 3

and 6 in Table 2.1 measure the cost of transferring data in each direction.

What is the cost of accessing encrypted memory? The enclave memory resides

in the EPC and it is encrypted. The Memory Encryption Engine (MEE) provides both

confidentiality, integrity, and protection from rollback attacks. Providing these security

guarantees is expected to come at a performance cost. Microbenchmarks 7 and 8 measure

the access time for consecutive memory buffers of various sizes, compared to access times

for regular (not encrypted) memory. Microbenchmarks 9 and 10 measure the access time of

non-consecutive reads and writes, and estimate the cache miss latency of encrypted memory,

compared to that of regular memory.

2.3.1 Experimental Setup

All experiments executed on a Supermicro server X11SSZ-QF, 64 GB DDR4 RAM @

2133 MHz, Intel Core I7-6700k 4GHz with 4 hyper-threaded cores (total of 8 logical cores).

Dynamic frequency and voltage scaling were disabled; the operating system was the Ubuntu

server 14.04 LTS. The SGX SDK version we used is 1.5.80.
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Measuring methodology: The execution time in clock cycles is estimated using the

read time stamp counter instruction - RDTSCP. RDTSCP is a serialized variant of RDTSC,

obviating the need to combine the costly CPUID instruction with RDTSC. On production-

deployed SGX systems, RDTSC and its variants are not allowed within the enclave, hence

all RDTSCP calls must be executed in the untrusted code. Calibration of RDTSCP shows it

is accurate up to +/- 2 cycles. Each microbenchmark consists of 10 groups of 20,000 runs,

totaling 200,000 test executions.

When using RDTSCP to measure cycle count of a user-space operation, it is important to

ensure that there are no context switches to the operating system, which would contaminate

the measurement. To avoid this contamination, we ran each experiment many times. Since

interrupts and context-switches to the OS are infrequent, repeating the experiment multiple

times ensure that the majority of the measurements are not interrupted. Moreover, any

context-switch to the OS while the application is executing inside the enclave, causes an

Asynchronous Exit - AEX, which forces the execution to jump to a known location in

the untrusted code. We monitored this location in order to count the number of AEX

events. Out of 200,000 measurements per micro benchmark, around 200-300 experienced an

Asynchronous Exit. Hence, we discarded those runs for the sake of performance estimation.

2.3.2 Measuring Ecalls Overhead

When the untrusted code wishes to initiate a trusted function, it does so via an ecall. The

transition into and out of the trusted code is implemented partially in software, i.e., the SDK,

and partially in hardware via the EENTER and EEXIT instructions.

Software interface: The ecall is a wrapper to the EENTER instruction. The ecall

first locates the enclave with the specified ID, then acquires a read/write lock, finds an

available Thread Control Structure (TCS), saves Advanced Vector Extensions (AVX) [79]

state, checks for floating point exceptions, and finally calls the EENTER instruction.

Hardware interface: The EENTER instruction preforms a secure context-switch as
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described in Intel’s Software Developer Manual (SDM) [137]. Most microcode operations

in EENTER involve disabling debugging/tracing mechanisms and defensive checks of

enclave management structures: SGX Enclave Control Structure (SECS) and Thread Control

Structure (TCS). After validating the SECS and TCS structures, the registers representing

the untrusted context (e.g., RAX, RSP etc.) are backed up and the enclave context is loaded

instead. At the completion of the trusted function execution, EEXIT performs the reverse

context switch, and un-suppresses the debugging/tracing mechanisms. As these operations

potentially involve sparse encrypted-memory accesses, they may add significant latency (see

Section 2.3.4, microbenchmarks 9,10 in Table 2.1, and Figure 2.8).

To measure the latency of performing an ecall, we created an empty ecall, i.e., a trusted

function that receives no parameters and returns no parameters. Since running RDTSCP

inside the enclave generates a fault, we can only measure the execution time of entering and

exiting the enclave together. The solid line in Figure 2.2a depicts the cumulative distribution

function (CDF) over 200,000 measurements. Over 99.9% of the measurements are between

8,600 and 8,700 cycles. For comparison, [252] estimates a transfer to the OS and back in

150 cycles, and [72] estimates hyper-calls to the hypervisor as taking 1,300 cycles (KVM

hypervisor on x86 processor). These measurements reflect performance with a warm cache.

Because of the repetitive 1 of the tests, the memory structures that are accessed to execute

the ecall are in cache for most runs. To eliminate this artifact, we conducted the same

experiment, but flushed the entire last level cache (LLC) before each run. The dotted line in

Figure 2.2a depicts the CDF of this experiment: the round trip time of executing an ecall is

between 12,500-17,000 cycles, with a median of 14,170 cycles, that is, 83-113x slower than

an OS system call.

2.3.2.1 Transferring Memory To/From the Enclave

When transferring parameters to a secure function, the SDK framework generates code

to serialize all the parameters inside a single contiguous data structure. This data structure
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Figure 2.2: CDFs of ecalls and ocalls performance. In cold cache experiments the entire 8 MB LLC
cache was flushed prior to every experiment, causing relevant data structures and code needed for the
ecalls/ocalls to be fetched from memory. a) ecalls: with warm cache, 99.9% of the calls complete
between 8,600 and 8,680 cycles. With cold cache 99.9% of the calls take between 12,500 and 17,000
cycles. b) ocalls: without flushing the cache 99.9% of the calls complete in 8,200 - 8,400 cycles.
With cold cache 99.9% of the ocalls take between 12,500 and 17,000 cycles.

is in the insecure memory and a pointer to the data structure is transferred to the trusted

function. To avoid data leakage from secure memory, the trusted function wrapper verifies

that the entire data structure pointed by the pointer is outside the enclave memory.

When dealing with buffers, the programmer can choose among four options: user check,

in, out, and in&out. The programmer selects the option when declaring the ecall in the

EDL file. The EDL file is written by the programmer with a specific Intel-provided syntax,

to declare edge functions (ecalls and ocalls), the parameters they receive, and additional

permissions for each edge function. Figure 2.4 reports the round trip time in cycles of ecall

including transferring buffers to&from the enclave. The cycle count for transferring 2 KB

buffers are shown in Table 2.1, microbenchmark 3.

Zero copy: The user check option means that the SGX framework treat the pointer

provided as if it were a value parameter. No security checks are carried out to validate if it

points to encrypted or regular memory and no copy is done. This is useful if this pointer is

pointing to encrypted memory (received earlier from the enclave), or in case of transfer of a

pointer, which will be used later by the untrusted code. An example can be a FILE pointer
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that the enclave will later use in a fread call.

Copying in: The in option tells the edger8r tool to generate wrapper code that will

allocate memory in the secure memory, according to a size parameter supplied by the

untrusted code, and then copy the buffer into the enclave. Memory encryption is transparent

to software: memory writes to secure memory are first written un-encrypted in cache, and

are encrypted by the MEE when the cache line is evicted to RAM. The pointer that will

be given to the trusted function implementation will point to a location within the enclave

encrypted memory. This is useful especially in cases where a threat of Time-Of-Check-Time-

Of-Use attacks (TOCTOU) exists. For example, if the secure-enclave checks a cryptographic

signature of a given data, and then uses the (supposedly verified) data for a critical operation,

while between the time of check and the time of use the untrusted code might have changed

the data. In order to measure the accurate latency of transferring new data into the enclave,

we removed the buffers inside and out of the enclave from the cache by calling clflush on

the relevant addresses, before each measurement.

Copying out: The out option is used when the untrusted code passes a buffer as an output

argument, i.e., the trusted code fills the buffer with data. Using the out option generates

wrapper code that allocates a buffer in secure memory according to a size parameter supplied

by the untrusted code, zeroes the entire buffer, and passes it as the pointer for the trusted

function. Upon return, this buffer is copied back to the insecure memory. The security

reasoning behind zeroing the buffer is to avoid information leakage. Since the buffer is

allocated on the secure memory heap, it may initially contain secret data. Should the trusted

function fill only part of the out buffer, this secret data will be copied back to the insecure

memory, leaking secret data similar to the HeartBleed bug [74]. To prevent data leakage,

the SDK zeroes the buffer using a proprietary version of memset, which operates byte-wise.

This is extremely inefficient on a 64 bit platform, and explains the added latency when using

the out option.

Copying in&out: The in&out option is used when the untrusted code passes a buffer as
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Figure 2.3: CDF of HotEcalls and HotOcalls. Over 78% of the calls are executed in less than 620
cycles, and 99.97% are completed within 1,400 cycles. For comparison, the native SGX SDK calling
mechanism is 13x-27x times slower. HotCalls’ footprint in memory is extremely small, compared to
native calls, reducing the chances of cache misses during the HotCall execution.

input and output argument. In this case the generated wrapper code allocates a buffer in

secure memory, copies the data from the insecure memory, and passes the new allocated

buffer to the trusted function. Upon return, the buffer is copied back to the insecure buffer,

obviating the need to zero the allocated buffer, like in the case of the out option. Copying

in&out is faster than using just the out option, as the memcpy used by the SDK is more

efficient than the byte-wise memset used in the out option.

2.3.3 Measuring Ocalls Overhead

When the secure code requires access to external resources, such as network, files, clock

etc., it needs to invoke out-calls.

Software interface: Similar to ecalls, ocalls are declared in the EDL file. The edger8r

tool provided in the SGX SDK generates trusted and untrusted glue code. The trusted code

marshals data structures, performs security checks on pointers values, and then executes the

EEXIT instruction. The untrusted code organizes the input arguments, calls the requested

OS API call (fopen, send etc.), marshals data to be returned to the enclave (the ocall output

arguments) and executes the ERESUME instruction to resume execution of the trusted code.

17



M
ic
ro
-s
e
co
n
d
s

5

10

7.5

2.5

12.5

Figure 2.4: Latency of ecall + transferring a buffer in/out/in&out. Transferring a buffer out is
extremely taxing due to the inefficient memset implementation in SGX SDK.

Hardware interface: The operations performed by EEXIT are as described in Sec-

tion 2.3.2. The operations performed by ERESUME instruction are described in Intel’s

SDM [137]. ERESUME performs similar operations as EENTER, but resumes execution of

the trusted code from the instruction after EEXIT.

As in ecalls, pointer parameters can be marked in the EDL file as user check, in, out,

in&out to instruct the edger8r how to generate the code. Figure 2.2b shows the round trip

latency for performing an ocall. Figure 2.5 shows the performance implication of using the

in/out/in&out options when transferring buffers to/from ocalls.

Zero-copy: As before, user check entails zero-copy and no checks. This is useful when

passing pointers that are provided by the OS, such as a file pointer.

Copying out: contrary to ecalls, in the case of ocalls, the in option means “into the

ocall”, i.e., from the secure memory out to the insecure memory. The wrapper code verifies

that the pointer points to a location within the enclave. It then allocates memory on the

insecure stack according to a size parameter supplied by the enclave (no use of malloc

here). Finally, it copies the buffer to the insecure memory. Upon re-entry to the enclave the

allocated memory is freed by unwinding the insecure stack.

Copying in: The out option stands for “out of the ocall, into the enclave”. The wrapper

code allocates memory on the insecure stack, according to a size parameter supplied by
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the enclave. The newly allocated buffer in the insecure buffer is then zeroed. After the

ocall itself returns, the buffer is copied back into secure memory. In my opinion, zeroing

the buffer in the insecure memory has no security benefit. The untrusted code can access

this memory anyway, prior to invoking the latest ecall. As mentioned before, zeroing the

buffer is carried out via memset, which the SDK implements as byte-wise zeroing. This

is extremely inefficient, and explains why the out option is much slower than the in&out

option. We observe that zeroing a buffer in the plaintext memory does not add a security

benefit, and thus this operation can be removed. In Section 2.6, we evaluate the impact of

the No-Redundant-Zeroing approach on common applications.

2.3.4 Measuring Memory Access Overhead

The enclave code can access both regular memory, and enclave memory. The enclave

memory resides within the Enclave Page Cache (EPC) and is encrypted by the Memory

Encryption Engine (MEE), which resides on the processor’s die and is described in [107].

The MEE provides confidentiality, integrity, and anti-roll-back protections for the entire

EPC. These guarantees are provided by maintaining an integrity tree, with its root stored on

the processor’s die. A full walk of the tree involves several memory accesses. Therefore,

a “MEE cache” is used to prevent significant performance costs, when accessing nearby

memory addresses.

The work presented in [107] also analyzes the potential performance degradation of

using encrypted memory, and evaluates the worst case benchmark to exhibit a 12% overhead

when using encrypted memory. However, my measurements shows substantially higher

overhead, as will be detailed shortly.

Consecutive buffer access: Figures 2.6, 2.7 plots the memory read/write times when

accessing encrypted and plaintext memory, for different buffer sizes. Entries 1 and 8

in Table 2.1 list the results of reading and writing 2 KB buffers. The memory read &

write microbenchmark consists of accessing 8-bytes (64 bit) aligned words of consecutive
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Figure 2.5: Latency of ocall + transferring a buffer to/from/to&from untrusted memory. Transferring
from untrusted code has high latency, due to (redundant) zeroing of the buffer in the untrusted
memory with the inefficient memset, provided by the SDK.

addresses, for different buffer sizes. The buffers were flushed out of the last level cache

(LLC) before each experiment, and mfence was called before the final call to RDTSCP, to

ensure the operations had completed. When measuring write latency, the experiment was

completed by flushing the buffer from cache via clflush followed by mfence prior to calling

the final RDTSCP.

Cache misses: To estimate cache-load-miss and cache-store-miss latency, we performed

the same read and write experiments, accessing only the first 8 bytes (64 bit) of an address

which is aligned to the cache line size (64 bytes on the tested machine). The cache line was

evicted from the LLC before each measurement. The first four bars of Figure 2.8 shows the

results on the micro benchmarks for reading and writing in encrypted memory, and for cache

miss penalties. The cycle counts are detailed in lines 9,10 of Table 2.1. Cache-load misses

and cache-store-misses are 30% and 19.5% slower when accessing encrypted memory vs.

plaintext memory.

SPEC 2006 memory intensive benchmarks: To test the effect of more complicated

memory access patterns, we selected three highly memory-intensive benchmarks from SPEC

2006 [111]: mcf, libquantum, and astar. Figure 2.8 compares the latency of the memory

microbenchmarks mentioned and the selected benchmarks from SPEC 2006. Previous work
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published by Intel [107] measures several benchmarks from SPEC 2006, showing that, in

the worse case, the encryption overhead is roughly 12%. In my measurements, mcf runs

55% slower in the SGX enclave, and libquantum runs 5.2x slower. A likely explanation for

the extreme slowdown in the case of libquantum, is that it required 96 MB of memory, while

the entire Enclave Page Cache (EPC) is 93 MB. This forces paging out encrypted memory

pages, which requires further SGX operations.

2.3.5 Lessons Learned

We now discuss insights from the measurements, which can be used by developers

designing secure-enclaves to devise optimization strategies. These insights were also

instrumental in my design of HotCalls, as we discuss in Section 2.4.

Cost of ecalls & ocalls: Compared to regular OS syscalls, an ecall is 54x more cycles at

best (8,200 vs 150) when the cache is warm, and 83-113x at worst when cold (12,500-17,000

vs 150). If an application has high call rate, for example, 100,000 calls per second, on a 4

GHz core the ocalls will consume 20-40% of the execution time. The applications evaluated

in Section 2.6 exhibited more than 200,000 calls per second, as detailed in Table 2.2. My

solution, HotCalls, proposes an alternative calling mechanism that reduces this latency

to as low as 620 cycles per call, which is 13-27x faster than the default ecalls and ocalls

mechanism.

Ocalls vs. Ecalls: Ocalls may execute slightly faster than ecalls. Transferring buffers

from the enclave to the untrusted application is faster using ocalls: 9,252 cycles for ocalls in

vs. 11,712 cycles for ecalls out (2 KB buffers). This insight may lead to an optimization

strategy of using ocalls to receive data from the enclave, rather then delivering it via an

output parameter with ecalls.

Cost of memory access: Write accesses of encrypted memory incur 6.5-19.5% over-

head, and read accesses incur 30-102% overhead, depending on buffer size. For software

that is memory read intensive, we can estimate the impact on throughput in the following
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Figure 2.6: Latency of consecutive memory reads, for encrypted and plaintext memory. All buffers
were evicted from the cache prior to every experiment. The overhead of reading encrypted memory
of sizes 2,4,8,16,32 KB is 54.5%, 68%, 71%,94%,102%, respectively.
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Figure 2.7: Latency of consecutive memory writes, for encrypted and plaintext memory. All buffers
were evicted from the cache prior to every experiment. The overhead of writing encrypted memory
is roughly around 6% for all buffer sizes above 1 KB.

way: without encryption, N memory reads are carried out in time T , and with encryption in

1.5T (assuming 2 KB buffers). Thus, we can expect that encryption slow down throughput

to N
1.5T / N

1T = 66% throughput, not accounting for any other SGX performance impact.

Selecting the right transfer method: For both ecalls and ocalls, the out option is

extremely inefficient. This is due to the inefficient implementation of memset in the SDK,

used for zeroing buffers. Assuming that the untrusted code has nothing to hide from the

enclave, it is more efficient to use the in&out option instead. Despite the fact that the

buffer will be redundantly copied to the secure memory, this will save 885 / 1617 cycles for
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ecalls / ocalls in the case of a 2 KB buffer.

Opting for user check: If the enclave just dumps data to the output buffer, then there

is no threat of the untrusted code modifying the data while the enclave code is processing

it. In that case it is preferable to use the user check/zero-copy option, and have the enclave

directly write data to un-encrypted memory. This will save about 3,000 cycles on a 2 KB

buffer (11,712 vs 8,640 cycles). Developers should be careful when using this option. If the

secure-enclave performs encryption or decryption in place, having access to the partially-

processed buffer during the encryption/decryption process may lead to exposing the secret

key.

Further optimizations: The latency incurred in buffer transferring is incurred by mem-

cpy and memset. The SGX stdlib implementation of memset is operating on memory

byte-wise, which is extremely inefficient on a 64 bit processor. Using a more optimized

version of memset may significantly improve performance. Additionally, when large buffers

need to be transferred, it may by beneficial to use optimized versions of memcpy, utilizing

Advanced Vector Extensions (AVX) [79] instructions which are able to copy words larger

than 64-bits efficiently. Intel may wish to include this optimization in future versions of the

SGX SDK.

2.4 HotCalls: An Optimized SGX Interface

Motivated by the fact that using the default SDK calling mechanism may lead to a 113x

slowdown, we now present HotCalls, an alternative mechanism to perform ecalls and ocalls,

leading to an order of magnitude performance improvement. Compared to 8,200-17,000

cycles required for SDK ecalls/ocalls, HotCalls can be as fast as 620 cycles. While SGX

calls rely on expensive secure context switches, HotCalls operations are based on using

shared un-encrypted memory.
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Figure 2.8: The overhead of memory encryption on memory-access speed: L and S stand for Load
and Store. Memory reads and writes are of consecutive 2 KB buffers. mcf, libquantum (libq), and
astar are memory intensive benchmarks from SPEC 2006.

2.4.1 HotCalls Architecture

Edge calls in SGX are context-switch operations, similar to VMENTER and VMEXIT

used for virtual machine context switches in Intel’s VTX technology [196]. Previous work

exists on optimizing communication mechanisms between hardware and software (interrupt

handlers), and virtual machine manager and guest operating systems (hyper-calls or VM-

exits). An approach that has shown to be effective is avoiding the software context switch

by using shared memory as a communication channel and dedicating a thread to poll for

new messages. This has been tried in Linux NAPI to optimize access to hardware [238] and

in virtualization scenarios to eliminate the need for an expensive context switch [174, 159].

We take a similar approach and propose an architecture that consists of a requester and a

responder, communicating via un-encrypted shared memory.

Figure 2.9 illustrates this architecture, where the enclave code is the requester, and the

untrusted code is the responder. The requester is the party requesting a call, while the

responder is an On Call thread, standing by, waiting for a call. It does so by constantly

polling a shared memory location. Synchronization of the shared memory is provided

using a spin-lock. When the requester makes a call, it acquires the spin-lock and checks a

shared Boolean variable to verify that the responder is not currently busy. If the responder
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is available, the requester copies relevant data to unencrypted shared memory, and points

to that data via the *data pointer. The code to encapsulate parameters within the data

structure is the same code used by the SDK ecalls/ocalls mechanism, that is automatically

generated by the edger8r tool. To support more than one specific call, e.g., read, write

etc., the requester specifies the ID of the call it is requesting. This is an entry ID to a

function call table, known to the responder. The call table approach is similar to the SDK

implementation of ecalls and ocalls. Once the data pointer and the requested call ID are in

place, the requester signals “go” to the responder, by marking the responder as busy, and

releases the lock. The responder is constantly monitoring the same shared memory and

executes the relevant call when requested.

2.4.2 Practical Considerations

Spin-lock: Use of standard POSIX MUTEX is not possible, as it requires calling upon

the operating system services, defeating the entire purpose of HotCalls. Synchronization

techniques using MONITOR/MWAIT instruction entails several thousands of cycles, sim-

ilar to regular SGX calls [28]. The SGX SDK provides a spin-lock implementation as

sgx spin lock. This is a straightforward busy-wait implementation and does not relate to

SGX, so it can be used by both the enclave and the untrusted code.

Minimizing self-contention: To ensure that both the requester and responder get a

chance to acquire the spin-lock, PAUSE instructions are added after releasing the lock. This

gives a chance to other threads to try and acquire the spin-lock. The PAUSE instruction

was designed by Intel specifically to improve performance in spin-lock busy wait loops, by

minimizing memory order violations of speculative loads, and also to help reduce power

consumption.

Maximizing utilization: As the responder is constantly monitoring the shared memory,

it is effectively using 100% of the logical core. The utilization can be considered as the

amount of time the responder is spending on ExecuteCall vs. the time spent on acquiring

25



the lock and checking the Boolean flag value. This utilization can potentially be improved

by sharing the responder thread with several requesters.

Preventing starvation: Contention of several requesters on the responder can cause the

requester to loop many times before it acquires the lock and the responder is available. The

maximum worst-case wait time is therefore potentially unbounded. As a mitigation for this

potential starvation, the requester can set a timeout - a maximum number of times to check if

the responder is available. If the timeout expires, the requester can fall back to using regular

SDK calls. In my experiments and evaluation of applications, we set this timeout to 10, and

it never expired. Nevertheless, we find this mechanism vital for producing reliable code.

Conserving resources at idle times: When there are not many calls, the responder

wastes CPU resources, constantly polling shared memory. To conserve resources during idle

times, a timeout counter can be set. The counter is decremented when there is no request

waiting (step 2 in Fig. 2.9, right side), and reset when a request arrives (in step 3). When the

timeout counter expires, the responder set a sleep flag, and goes to wait on a conditional

variable (POSIX pthread cond, or sgx thread cond). The requester notices the sleep flag is

set and signals the condition variable before issuing the request.

Marshalling parameters to be transferred to the function: The SDK generates code

for packing ecall/ocall parameters. The framework we built for the evaluation automatically

uses this code to pack/unpack the parameters and copy buffers if needed. This solution

allows us to also avoid redundant buffer zeroing when transferring data from the untrusted

code, without compromising security. The performance implications of removing the

redundant memset will be detailed in the next section.

2.4.3 Empirical Evaluation of HotCalls

The implementation of HotCalls consists of 115 lines of code. Similar to the microbench-

marks described in Section 2.3, we performed 10 batches of 20,000 measurements each,

totalling 200,000 measurements. Figure 2.3 shows the CDF of the latency of HotEcalls and
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Shared	Memory

Enclave Untrusted	Code
Request	call
1.	Acquire	lock
2.	Set	data
3.	Set	call_ID <- function_ID
4.	Mark	“Go”,	release	lock
5.	Acquire	lock
6.	Is	“Done”	set?
- No:	release	 lock	and	go	to	5

Poll	for	call
1.	Acquire	lock
2.	Is	”Go”	set?
- No:	release	 lock	and	go	to	1

3.	Release	lock
4.	Execute(	call_ID,	data	)
5.	Acquire	lock
6.	Mark	“Done”,	release	 lock

Spinlock void	*data call_ID Go	|	Done

Figure 2.9: HotCall architecture. The secure-enclave requests a call by signaling a request via
a shared variable in un-encrypted memory, together with the ID of the requested function. The
responder thread in the untrusted side continuously polls the shared memory to check if a call request
has been made.

HotOcalls. In both cases, more than 78% of the calls took less than 620 cycles (warm cache).

Over 99.97% of the calls took fewer than 1,400 cycles. For comparison, the ecalls/ocalls

mechanism provided by the SGX SDK requires 8,200-17,000 cycles.

2.4.4 Implications of Using an Additional Core

The benefit of using an additional logical thread to utilize HotCalls can be analyzed

from two perspectives: application’s throughput and overall power consumption. Analysis

of both perspectives depends on whether HotCalls increases the application’s throughput by

more than a factor of 2, as explained below.

Throughput: When considering optimizing an application with HotCalls, the overall

throughput increase by using HotCalls should be compared to the potential benefit of simply

adding an additional worker thread. This is not always possible, as some applications

are developed in a single thread. The additional extra thread cannot increase the overall

throughput by more than a factor of 2. Hence, HotCalls are preferred over adding an

additional worker thread, when it more than double the throughput.

Power consumption: When the responder is idle, or underutilized, it issues the PAUSE

instruction in a loop, therefore it is not expected to consume much power. If the responder
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is idle for relatively long periods of time it can conserve power by waiting on a conditional

variable, releasing the core resources, as suggested in Section 2.4.2. When the responder

is busy, and the overall throughput increases by more than a factor of 2 (as for all the

applications evaluated in Section 2.6) even if the power consumption doubles, the power per

given throughput unit is still more efficient when using HotCalls.

2.5 Security Analysis

In order to assess to security implications of using HotCalls we examine the modifications

which may affect the trusted code running inside the enclave.

Using shared plaintext memory for communication: The HotCalls technique for

passing data structures between the enclave and the untrusted code is no less secure than

the SGX SDK’s mechanism. HotCalls source code for marshalling data structures between

the enclave and the untrusted code is the same code used by the SDK’s ecalls and ocalls

implementation, generated by the edger8r tool. Any manipulation possible on data, which

was marshalled by HotCalls, is also possible when using the SDK’s ecalls and ocalls.

Attacks on the data pointer: Any security breach possible via manipulating the data

pointer used by HotCalls is also possible on the pointer passed by the SDK’s implementation

of ecalls and ocalls. For ecalls, the responder (inside the enclave) identifies the request

for a call, and passes the data pointer to the original function created by the edger8r tool.

From then on the source code is identical to the default SDK implementation, including all

security checks on the pointer in untrusted memory, and the copying of relevant buffers by

using in or out modifiers (see Section 2.3.2.1).

In the case of ocalls, the HotOcall wrapper in the trusted code is almost identical to the

original ocall code generated by the edger8r tool. The only difference is replacing the call

to the SDK function sgx ocall, responsible for invoking the EEXIT instruction, with code

requesting a HotCall, similar to the “Request call” function illustration in Figure 2.9.

Requesting a function via call ID: The technique of setting a function number in
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shared memory is also utilized by the SDK. The “call ID” in HotCalls is comparable to

the “ocall index” variable used by the SDK. Any manipulation on “call ID” is also possible

on the “ocall index” passed by the SDK to the untrusted ocall. Such manipulation to the

“call ID” or “ocall index” will cause the untrusted code to execute a wrong function, hence

no new vulnerability is introduced.

Using the spin-lock located in shared memory: Tampering with the synchronization

provided by the spin-lock will either cause a denial of service (DoS) due to a deadlock,

which is out of the SGX threat model or will cause multiple threads to access the same data

in plaintext memory at the same time. Similar to HotCalls, the SDK’s ecalls and ocalls

involve pointers in untrusted memory, which are accessible to the adversary in the SGX

threat model. Therefore, the adversary can manipulate these pointers to cause multiple

threads to access the same memory simultaneously, whether the threads are executing trusted

or untrusted code.

2.6 Evaluating HotCalls on Applications

To evaluate the performance impact of SGX on complex software we chose three appli-

cations: memcached, openVPN, and lighttpd. Figures 2.10 and 2.11 show the throughput

and latency of these applications in normal execution and when running inside an SGX

enclave. Each application, at its peak utilization, is performing hundreds of thousands of

Linux API calls, each second. Table 2.2 lists a breakdown of the most frequent API calls

in each application, and the execution time spent on facilitating the calls. Using HotCalls

and the No-Redundant-Zeroing approach we were able to reach a 2.6-3.7x throughput boost,

compared to the unoptimized implementation, and reduce the average response latency by

62-74%.
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Application
Frequent Calls

(Calls x1000 / second)

Total

Calls

Core

Time

Memcached
read(66.5), sendmsg(66.5)

RunEnclaveFucntion(66.5)
200K 42%

OpenVPN

poll(87), time(87), getpid(13.6), 

write(30), recvfrom(30), 

read(13.6) sendto(13.6)

275K 57%

Lighttpd

read(49),fcntl(25),

epoll_ctl(25), close(25),

setsockopt(25), __fxstat64(25)

inet_ntop(12),accept(12),

inet_addr(12),ioctl(12),

__open64_2(12), sendfile64(12)

shutdown(12),writev(12)

270K 56%

Table 2.2: Number of API calls (in thousands per second) in non-optimized memcached, openVPN
and lighttptd, running inside a SGX secure-enclave. Each ocall, including both software and hardware
interfaces (see Section 2.3.3), takes roughly 8,300 cycles (assuming a warm cache). On a 4 GHz
core, the execution time is thus Ncalls ·8,300 / ((4 ·109)), which is listed in Core Time column.

2.6.1 Efficient Application Porting

SGX Enclaves shield the code running within them from the rest of the system. Com-

munication to and from the enclave is carried out via defining edge functions (ecalls and

ocalls). Previous work [224, 40, 34] argued that it is desirable to port applications into an

SGX enclave as a whole, minimizing the number of code modifications. Any change to

production-grade software may introduce new bugs and potentially new security vulnera-

bilities. We determined to take a similar approach as the baseline SGX implementation of

the applications under test. The main ecall was defined as simply calling the application’s

original main function. We used the makefile provided by the SGX SDK [128] as a guideline

for building the enclave shared object. Any OS API call used by the application will result

in an ocall.

Identifying API calls: Any call to a function outside the code-base results in an unde-

fined reference error at link time. Examples of such functions are fopen, fread, time, socket

and so forth. Each application under test had between 93-144 such undefined references.

For each function, it is required to generate a wrapper function that will be executed inside
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the enclave, and an EDL declaration of an ocall, describing the nature of the arguments

(input, output, size of buffers), and finally a landing function in the untrusted code which

will call the relevant OS API. We developed a framework to identify the undefined refer-

ences and generate the needed trusted/untrusted wrapper code. As it is sometimes hard to

infer programmatically the input/output nature of an argument, and its size in memory, the

framework allows adding exceptions by hand. The wrapper code allows adding counters

that estimate the number of calls per second of each function. A breakdown of the most

frequent calls per application is presented in Table 2.2.

Marshalling data structures: In HotCalls, only a void pointer is transferred between

the enclave and the application (and vice versa). The edger8r tool provided by the SDK gen-

erates marshalling code to pack/unpack parameters from a structure, perform the necessary

security checks, and copy buffers. The framework automatically extracts the marshalling

code generated by the edger8r tool, to generate wrapper code to be used with HotCalls.

Corner case API calls: Some API calls require special attention. A new thread creation

with pthread create eventually calls a function inside the enclave, using a pointer provided

to the call in start routine. If start routine points to code residing inside the enclave, this

call will fail. Therefore, we created a new ecall edge function RunEnclaveFunction, which

receives a pointer to code inside the enclave and jumps to it, in the same way pthread create

would.

The structures pthred mutex t, pthread cond t are used as synchronization mechanisms.

The SDK provides alternatives to these structures: sgx thred mutex, sgx thread cond, that

should be used instead. The SDK also provides matching locking/unlocking and waiting/sig-

naling operations. Whenever these synchronization mechanisms were used, we replaced

them with the SGX SDK alternatives.
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2.6.2 Memcached

Memcached is a key-value RAM database. It is typically used as a caching layer

between web-servers and the back end database to boost performance. Memcached is widely

deployed: e.g., Facebook, Zynga, Twitter, Youtube [168, 236]. As suggested by CryptDB

[223], it is desirable to protect the confidentiality and integrity of a database by encrypting

it. Completely porting the database application to run within an SGX enclave offers similar

security guarantees as CryptDB, with minimal development effort.

A thorough workload analysis of deployed memcached instances is provided in [37].

The majority of the requests are under 2KB for the size of the requested value. As a caching

layer, memcached performance is measured by the number of requests handled per second

and the latency for replying to each request, as observed by the requesting client.

We evaluated memcached version 1.4.31, on the same platform described in Section 2.3.

We tested the performance with memtier benchmark [231], a tool developed by Redis Labs

to evaluate memcached performance. The benchmark used the binary protocol, the ratio

of SET:GET was set to 1:1, and the data size of the payload was set to 2KB. A total of 4

million requests were issued, from 4 concurrent threads. We ran memcached with a single

thread. To avoid hindering the performance due to link-capacity we ran both memcached and

memtier-benchmark on the same machine - using the loopback as the network interface. The

original memcached source was able to service, on average, 316,500 requests per second,

with average response latency of 0.63 milliseconds. Unoptimized porting of memcached

into the SGX enclave, as described in Section 2.6.1, reduced the throughput to 66,500

requests per second, and the average response latency to 2.97 milliseconds, a 79% reduction

in serviced requests and a 4.7x increase in latency.

Porting memcached to run inside an enclave exposed 93 external API references. Table

2.2 provides a breakdown of the most frequent API calls: read and sendmsg. On average

read and sendmsg are called from within the enclave 66,500 times per second. Memcached

utilizes libevent to wait on a socket, and receives a callback when new data is available. Since
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Figure 2.10: Optimizing throughput with HotCalls and No-Redundant-Zeroing. The measurements
are normalized to running without SGX. Memcached, by nature, is a memory-intensive application,
and therefore optimization is limited by the performance of the memory encryption engine.

the callback function is inside the enclave, it requires invoking an ecall, RunEnclaveFunction.

RunEnclaveFunction is called on average also 66,500 times per second. To ensure that the

counters do not interfere with the performance measurement, we repeated the benchmark

with the counting code removed. Measured results were similar.

There are total of 199,500 edge calls per second. As ecall requires at least 8,600 cycles,

and ocall requires at least 8,200 cycles, this sums up to over 1.7 billion cycles per second

spent merely on transferring control between SGX and untrusted code, not accounting for

memory transfers. On a 4GHz core, this is 42% of the core time spent on SGX context

switching.

Results: Utilizing HotCalls for read, sendmsg, and RunEnclaveFunction increases the

throughput to 162,000 requests serviced per second, and reduces the response latency to

1.23 milliseconds, a 2.4X increase in throughput and 58% decrease in latency. Figures 2.10

and 2.11 depicts HotCalls impact on throughput and latency. The read API call is receiving a

buffer from the network, therefore using the out category of ocalls. Removing the redundant

zeroing performed by the SGX generated code increased throughput to 185,000 requests per

second, and reduced response latency to 1.08 milliseconds. This is 2.8x increase compared

to SGX SDK calls, and a 64% reduction in latency.
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Fundamental limitation: Even with HotCalls, the throughput is still only around 60%

of the non-SGX baseline. Memcached is by nature memory intensive. The memory accesses

are uniform across the memory-stored database, leading to poor spatial locality, and therefore

suffer from many cache misses. As suggested by the memory access microbenchmark and

mcf benchmark in Section 2.3, memory access latency of 2KB buffers may be slowed

down up to 55%, potentially causing throughput degradation up to 35%, just accounting

for memory access overhead. This is inherent to using encrypted memory. Recent work

has suggested a speculative loading mechanism to improve the performance of encrypted

memory [112], and may improve the performance of memory intensive applications such as

memcached.

2.6.3 OpenVPN

openVPN [213] is a well known widely used open-source Virtual Private Network (VPN)

solution that provides secure encrypted tunnels between two endpoints connected to the

Internet. openVPN utilizes OpenSSL library [212] as the cryptographic implementation.

Compromising the secret keys used by openVPN compromises the security of the tunnel,

potentially allowing an outsider to inspect tunnel communication or inject traffic. Therefore,

it may be desirable to port openVPN into an SGX enclave to protect encryption and

authentication keys.

We evaluated openVPN version 2.3.12, using OpenSSL version 1.0.2. We created a

secure tunnel between the SGX machine specified in Section 2.3, and a desktop machine

Intel NUC 5i7RYH with 16 GB of DDR3, running Ubuntu Desktop 16.04 LTS, connected

in a 1 Gbit/sec link. To evaluate the throughput, we used iperf3 [144]. We ran iperf3 for 60

seconds to estimate the actual maximum TCP bandwidth between the desktop and the SGX

machine and found it to be 935 Mbit /sec. We then ran iperf3 over the openVPN tunnel

(without modification) and measured a TCP bandwidth of 866 Mbit /sec, showing that the

Ethernet link is not fully saturated. Unoptimized porting of openVPN into the SGX enclave,
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as described in Section 2.6.1, reduced the TCP bandwidth to 309 Mbit/sec, a 64% decrease.

We estimated the round trip latency using a flood ping, sending 1 million requests, with

preload of 100 requests before waiting for the response. For native openVPN, the average

round trip latency was 1.427 milliseconds. The SGX implementation increased the average

latency to 4.579 milliseconds, a 3.2x increase.

Porting openVPN to run inside an enclave exposed 131 external API references. Table

2.2 provides a breakdown of the most frequent API calls, totaling roughly 275,000 ocalls

per second, wasting 57% of the core time merely on SGX context switches. A surprisingly

frequent API call is getpid. This call is invoked by OpenSSL whenever a cryptographic

context is called. Other frequent API calls are inet ntop, inet addr. These are utility

functions, which could be implemented inside the secure-enclave to reduce the number of

ocalls and improve performance.

Results: Utilizing HotCalls for all seven frequent API calls, increases the bandwidth to

694 Mbit/sec, and reduces the round trip latency to 1.873 milliseconds, a 2.25x increase in

bandwidth and 60% decrease in latency. Results are depicted in Figures 2.10 and 2.11. The

calls recvfrom and read receive a buffer from the untrusted code, therefore using the SDK

out category of ocalls. Removing the redundant zeroing performed by the SGX generated
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code increases bandwidth to 823 Mbit/sec and reduces the round trip latency to 1.747

milliseconds: a 2.66x bandwidth increase and 62% decrease in latency.

2.6.4 lighttpd

lighttpd [167] is an open source, light-weight web server optimized for speed and serving

many concurrent requests. It runs single-threaded in a single process. We evaluated lighttpd

version 1.4.41. We evaluated its performance using http load [7]. The measurement con-

sisted of 100 concurrent clients connections, fetching a total of 1 million 20 KB pages. The

connections were over the local loopback to maximize available link bandwidth. Unmodified

lighttpd was able to serve an average of 53,400 pages per second, with average response

latency of 1.52 milliseconds.

Unoptimized porting of lighttpd into SGX enclave, as described in Section 2.6.1, reduces

the number of requests per second to 12,100, and increases the response latency to 8.25

milliseconds, a 77% decrease in throughput and 5.4x increase in latency. Porting lighttpd to

run within an enclave exposed 144 external API references. Table 2.2 gives a breakdown of

the most frequent API calls, totaling in roughly 270,000 ocalls per second, costing 56% of

the core time. The API calls inet ntop, and inet addr don’t require OS involvement and can

be implemented inside the enclave, reducing by 9% the number of ocalls. The rest of the

calls, however, do require access to external OS resources, and can not be optimized into the

enclave.

Results: Utilizing HotCalls for all 14 frequent API calls, increases the throughput to

40,400 requests per second and reduces the response latency to 2.40 milliseconds, a 3.3x

increase in throughput and 70% decrease in latency. Results are depicted in Figures 2.10

and 2.11. The calls read and inet ntop receive a buffer from the untrusted code, therefore

using the SDK out category of ocalls. Removing the redundant zeroing performed by the

SGX generated-code increases throughput to 44,800 requests per second, and reduced the

response latency to 2.13 milliseconds, a 3.7x increase in throughput and 74% decrease in
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response latency compared to an unoptimized SGX implementation.

2.7 Related Work

SGX related sources: The SGX official documentation is in Intel’s Software Developer

Manual [137]. Explanation of the technology can be found in “Intel SGX explained” [69],

and in a presentation given at Black Hat [12]. None of these documents provide specific

measurements for the various operations supported by SGX, nor suggest optimization

strategies.

Similar technologies: Sanctum [70] is an alternative secure execution technology for the

RISC-V [278, 35] open processor. ARM Trustzone is ARM’s secure execution solution [19],

allowing co-existence of a secure world OS, in parallel to the normal world OS to manage

sensitive data and operations. SecureME [64] introduced a potential architectural support for

protecting user space applications’ memory from other applications and privileged code such

as the OS, VMM or SMM code. Overshadow [63] proposed a VMM enforced mechanism

to offer similar protection, but only against other applications and the OS.

Previous work on SGX: Drawbridge [224] is a solution for moving most of the OS

operations into user space to improve security. Haven [40] makes use of Drawbridge in

order to port entire applications with most of their OS-support needs inside an SGX enclave.

VC3 [240] is an implementation of map-reduce across multiple servers, running on SGX

secure-enclaves. SCONE [34] shows how to run docker containers inside a secure-enclave,

and suggests techniques to improve the container performance. These solutions are very

effective but are mainly applicable to applications running inside docker. Ryoan [115] offers

a framework that allows one enclave to trust another enclave from a different provider, to

receive secret data, guaranteeing that it would not be leaked. A possible side-channel attack

against SGX is described in [286], exploiting the leakage of memory access patterns in page

granularity, i.e., 4 KB. Although all the above mention performance implications of using

SGX secure-enclaves, no specific measurement of operations is provided. Therefore, it was
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not previously clear what optimization strategies should be made to improve performance

when developing enclaves.

Related optimization work: The approach of polling for events, instead of being called,

was suggested for use with hardware in Linux NAPI [238], to minimize the need for a

context switch to interrupt handlers. In the virtualization context, this approach has been

investigated in [159, 238] as a way to accelerate accessing hardware or virtualized hardware,

saving the costly context switch between guest OS and hypervisor. The implementation of

HotCalls, suggested in this chapter, is inspired by these approaches.

2.8 Conclusion

Identifying the bottlenecks of Intel’s SGX technology is an important step to make

secure computation practical. Leveraging the insights from the microbenchmarks allows

developers to focus the optimization effort effectively. HotCalls is an alternative calling

interface for SGX secure-enclaves, which optimizes the calling latency by a factor of 13-27x.

Using HotCalls, the throughput of common applications can be boosted by up to 3.7x,

and the response latency can be reduced by up to 74%. In order for security-enhancing

technologies to be prevalent, they need to be practical. The best practices discussed in this

chapter and HotCalls are an important step in making SGX both a secure and a practical

solution. The HotCalls mechanism presented in this chapter influenced Intel’s design of

switchless calls in the SGX SDK.
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CHAPTER III

TEE Service: Practical Trusted Execution Services for the

Cloud

3.1 Introduction

In the previous chapter, I analyzed the impact of SGX on applications’ performance

when they execute on a single machine. In this chapter, I analyze and address the challenge

of managing distributed secure services using SGX across multiple machines.

To protects their clients data, service providers traditionally opt to run their software in

private clouds [33, 76, 192, 229, 259, 274]. And yet, because of the difficulty of securing

infrastructure, it is unclear that private clouds are actually less risky [81, 198, 199].

Trusted Platform Modules (TPMs) and Hardware Security Modules (HSMs) help reduce

the trust in the software stack, but are slow and/or expensive [6, 38]. While TPMs can

perform cryptographic operations to verify the boot-software integrity, they are far slower

than CPUs: e.g., five RSA-2048 bit signatures / second [38] vs 4,000 (§3.7). Similarly,

HSMs are expensive ($2,500–$30,000 [6]) and require physical deployment. Hence, they

are typically used only when required by regulation, such as for root certificate authorities

and the payment card industry [219]. Low-end HSMs yield poor cryptographic operation

throughput relative to general-purpose processors (70-95% less, see §3.7), making them

impractical for high-throughput applications (e.g., servers, databases).
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Although promising, the mechanisms provided by TEEs—code integrity and secure

memory—are, by themselves, insufficient for a trusted multi-party distributed service.

Distributed services involve multiple interacting entities—the service owner and various

mutually untrusting clients—each with different security objectives. At the same time,

frequent software update is the norm in a cloud service. The owner wants convenient and

secure client access control and the ability to upgrade and maintain software. Clients must

validate service identity and maintain trust across service updates.

Stateful services and software updates open the possibility of rollback attacks that are

not sufficiently precluded by existing TEE primitives. SGX’s native rollback protection

mechanism, monotonic non-volatile counters, are provided by the Platform Software (PSW).

PSW is implemented outside of SGX TCB, in the Management Engine (ME [5]), which has

been compromised in the past [2, 3]. Other solutions [47, 115, 180] either (1) rely on client

trust in at least a subset of TEE machines, (2) require multi-client collaboration, (3) lack

access control mechanisms, and/or (4) provide no means for clients to track service state.

As such, these solutions may not be readily applicable for cloud computing. For instance, it

is unclear if services’ clients (e.g., bank clients) have any incentive to trust each other.

In this chapter I propose TEE-SERVICE, a framework that allows machines without local

HSMs or TEE support to request secure services. In this paradigm, a TEE-SERVICE-client

communicates with one or more TEE-enabled machines that act as TEE-SERVICE-server.

The owner (administrator) of a TEE-SERVICE can define which functionality is available

for which client.

TEE-SERVICE works by decoupling management of permissions, audit of service state,

and secure communication (§3.4, §3.6). In TEE-SERVICE, permissions are managed by

the owner, while clients audit service state. TEE-SERVICE provides the same security

guarantees that programs using a local HSM or TEE enjoy, while overcoming the practical

challenges of cloud deployment. TEE-SERVICE owners can securely manage fine-grained

client permissions for different services. In turn, TEE-SERVICE clients can audit that
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state-modifying operations they perform are not reverted and that the trusted software was

not modified. TEE-SERVICE automatically notifies clients of state and software updates

and allows them to approve the changes. Finally, TEE-SERVICE also allows TEE-enabled

machines in the data center to have access to a distributed secure computation service.

Consequently, TEE-enabled machines are not limited to their local resources and can

delegate secure execution to remote TEEs.

To demonstrate the effectiveness of TEE-SERVICE, we built TEE-CRYPT, a service for

remotely performing cryptographic operations, much like the functionality of a local HSM.

These operations include RSA and ECDSA [201] signing, AES-GCM [204] operations,

and AES-CMAC [118]. TEE-CRYPT provides stronger security guarantees than software-

only security services [9, 211, 212] and outperforms HSMs. In particular, TEE-CRYPT is

faster than HSMs by 4×-8× for RSA and ECDSA operations, 2.7×-14.9× for AES-GCM

encryption—at the fraction of the cost (500$ for an SGX-capable PC [23] vs. 2,500$ for

a low-end HSM [6]). We integrated TEE-CRYPT into NGINX [200] and Lighttpd [167]

web servers and Linux Pluggable Authentication Module (PAM [170]), demonstrating TEE-

CRYPT is a viable solution to augment systems’ security. TEE-Service is fully functional

and ready to be open-sourced.

To summarize, in this chapter I make the following contributions:

• TEE-SERVICE—a framework that builds upon TEEs to enable multi-party distributed

services with trusted access control, software update, and use of secure services.

• TEE-CRYPT—a prototype that uses TEE-SERVICE to perform remote cryptographic

operations, much like a local HSM, but with better performance and lower cost.

• A demonstration of TEE-CRYPT with popular web servers, to show that TEE-

SERVICE incurs reasonable overhead while improving security.

41



3.2 Challenges of Building TEE-SERVICE

TEE-SERVICE must address the practical challenges of multi-party distributed cloud

computing while maintaining trust. We now elaborate on the specific objectives.

State Freshness. The first challenge is to assure clients that any state-modifying opera-

tion they perform cannot be reverted. While some TEE’s protect against state rollback when

it is stored in RAM, there is no such guarantee when the state is backed in persistent storage.

SGX provides persistent storage via the sealing API [29, 131]. However, data stored to the

file system via the sealing API has no rollback protection, rooted inside SGX TCB, which

implies that the state of the service may be reverted when it is stored on persistent storage

(PSW monotonic counters are outside of SGX TCB and are a limited resource). For instance,

in a trusted cryptographic operations service, signing keys may be revoked. However, a

rollback attack on the persistent storage where key information is kept can restore a revoked

key.

A straw-man solution for preventing state rollback is by using the monotonic counters

provided by the Intel SGX SDK Platform Software [131]. However, the SDK imple-

mentation of the counter depends on Intel Management Engine (ME), which has been

compromised (see CERT and CVE reports [2, 3]). The ME lies outside the SGX TCB [5],

and hence cannot be trusted for rollback protection in the context of the SGX threat model.

Moreover, the SDK manual [131] states “SGX limits the number of monotonic counters

(MC) an enclave can create”, making monotonic counters a scarce resource.

Existing rollback solutions, such as ROTE and LCM [47, 180], ensure state freshness by

using an interactive protocol among various clients. However, collaboration among clients

may not be feasible in a cloud computing scenario, where clients are independent entities.

For example, multiple clients of a bank may not be interested in communicating with each

other. We address the State Freshness challenge without an interactive multi-party protocol

by relaxing the requirement for state freshness to only hold for each client individually

without sacrificing correctness of the overall state. TEE-SERVICE provides a mechanism for
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clients to verify that program state (from their perspective) only progresses forward (§3.4.5).

Additional details about prior work such as ROTE, LCM, and Ryoan [47, 115, 180] and the

difference between them and TEE-SERVICE are discussed in §3.8.

Secure Access Control. It is challenging to securely manage access control for users of

a trusted service, such as TEE-SERVICE. For example, some users may have the permission

to only read data (e.g., medical records), while other users may be allowed to perform

updates on the data. The administrative mechanism to grant clients access to a trusted

service (e.g., a cryptographic operations module) should be equally secure as the trusted

service itself. While it is possible to store an Access Control List (ACL) to permanent

storage, existing TEEs (e.g., Intel SGX, AMD SEV) do not provide adequate protection

against rollback attacks on persistent storage (as explained in State Freshness below). For

instance, the owner of a service may revoke access permissions of a user, which will update

the ACL on file. Even though the ACL file may be encrypted and signed, a user that can

access the ACL file (by owning the TEE machine or by attacking it) and rollback the file to

a previous version, which is also properly encrypted and signed. After rolling back the ACL

file, the user can regain their revoked permissions. We solve this challenge via a mechanism

that enforces the approval of the ACL version by the owner (or its delegate) prior to serving

any client (§3.4.4).

Trusted Updates. The third challenge is that it is hard to perform service software

updates in the presence of TEE signing and attestation. The service owners and clients have

different incentives. The owner wants to keep the service software up to date while the

clients want to prevent the owner from maliciously updating the software to a version that

will leak their private data.

Specifically, while software integrity is technically guaranteed by TEEs, it is challenging

for service owners to modify their software while maintaining clients’ trust in the system

state, and allowing the clients to verify that they are communicating with the same server

with the same state prior to the update. Any modification to the code running in a TEE will

43



generate a new code signature and will, therefore, appear to the clients as a different server.

TEE-SERVICE owners should be able to easily upgrade software, while TEE-SERVICE

clients need to approve the software update. If the user chooses to approve the software

update, they should be able to continue using the service seamlessly, proceeding with the

same system state as before the update. We address this challenge by tying the trusted

communication keys to the specific software-version, while the service state is tied only to

the service owner’s identity (§3.4.2 and §3.6).

3.3 Background & Threat Model

We now provide a brief background on TEEs and the services they provide followed by

a description of the different actors associated with TEE-SERVICE and their interactions as

shown in Fig. 3.1. We also explain the different types of attacks and potential compromises

to which each actor is susceptible.

3.3.1 TEE Key Properties – Background

As mentioned in the previous chapter, TEE technologies, such Intel SGX [29, 113, 183]

and AMD SEV [1, 26], allow the creation of a secure execution environment to isolate

critical software from the rest of the system. TEEs also provide mechanisms for verifying

code authenticity, proving the authenticity to a remote party, and storing data on persistent

storage (though without rollback protection).

Code Authenticity. The TEE allows measuring the code and data loaded into it by

computing a cryptographic digest (e.g., SHA-256) on the entire memory contents of the TEE.

The digest is the same on every load and is signed by the software developer at development

time. When an application is loaded into the TEE, the TEE verifies the signature that came

with the code matches the digest it just computed.

Attestation. Attestation allows an application running within a TEE to prove to a remote

party that it is indeed running on a genuine and secure TEE, and not on an emulation. During
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the attestation process, the TEE also provides the remote party with the digest of the code

and data loaded into the TEE. However, when the software changes due to a software

upgrade, all remote parties need to repeat the attestation process and must verify that they

are communicating with the same server with the same configuration and state.

TEE Encrypted Storage. TEE encrypted storage (e.g., sealing [29] in Intel SGX)

allows a TEE application to store data to the local file system using an encryption key that

can only be re-generated on the same machine. Therefore, other machines cannot decrypt

the stored data.

3.3.2 The Actors

Service Owner. The owner is the entity that implements and manages trusted services

(e.g., processing medical images or digitally signing documents with a private key). Code

running in TEEs needs to be signed by the owner’s private key and the matching public

key should be known by all other actors. The owner is also responsible for managing the

permissions of TEE-SERVICE-clients with respect to different services by maintaining an

Access Control List (ACL).

TEE-SERVICE Clients. Clients rely on TEE-SERVICE for using trusted services.

Clients can upload sensitive data to TEE-SERVICE and they can perform queries, computa-

tions, and updates on their own data or someone else’s data, which they may not be allowed

to access directly. For instance, clients of a trusted cryptographic key service can upload

a new signing key to TEE-SERVICE and use that key to sign a certificate. Alternatively,

clients might be allowed to create and use a key without knowing its value.

TEE-SERVICE Servers. Servers are TEE-capable machines running the trusted soft-

ware managed by the owner. The TEE technology on the servers computes a cryptographic

digest (e.g., SHA-256) of the code running in the server, which the owner also signs with

their private key. Clients can securely query TEE servers to verify the code’s authenticity

(i.e., who wrote the code?) and the integrity (has the code been tampered with?).
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Figure 3.1: The actors: the service owner loads the service software into the TEE-capable servers.
The service users remotely access the TEE-SERVICE and have hardware-assisted security via the
TEE.

3.3.3 Types of Attacks – Security Analysis

Similar to previous work [34, 40, 115, 180, 240], we consider a powerful adversary

that is capable of modifying the OS and the hypervisor, that can mount physical attacks to

manipulate main memory contents, and that has complete control over the network traffic.

We assume that the TEE guarantees are always maintained: only signed code can execute

within the TEE and it is impossible to extract the secure memory contents or revert it to an

older state (as opposed to persistent storage content, which the adversary may manipulate as

explained in State Freshness in §3.2). We now enumerate the consequences of compromising

the machines of the owner, clients, and servers.

Compromise of the Owner’s Machine. We assume that the service owner has at least

a single machine that can be fully trusted, regardless of possessing a TEE or not. Any

compromise of this machine will allow an attacker to add new clients and grant them

permissions to any service. However, existing clients’ data which is protected within the

TEE will still be secure as long as the private key used for signing the service’s code is not

compromised. If that signing key is compromised, the clients will still be able to detect

software change and decide if they want to trust to new software, before it will be able to

access their data.

While the service owner is probably initially trusted by the clients—the clients only

accept service software versions (see software update in §3.4.5) which protect the service
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state with an additional secret provided by the client. This scheme prevents the owner from

updating the software to a version that leaks client’s secrets.

Compromise of a Client’s Machine. If a client’s machine is breached, the attacker

can request services from TEE-SERVICE for which the client has permissions granted by

the owner. For instance, if TEE-SERVICE is providing cryptographic operations, such

as encryption and signing, it should be possible for a client, Cg, that is responsible for

generating keys to upload them into a TEE-server. Another untrusted client, Cu, (without

access to the key material) can then use the keys, e.g., for signing. If the client Cu is breached,

they can issue signatures at the attacker’s discretion. However, it is not be possible for any

client to export the key material itself.

Compromise of TEE-Servers. If a TEE-server is compromised, TEE security guaran-

tees will still hold. In particular, the cryptographic digest of the code in the TEE will remain

correct, because it is not possible for an attacker to modify the code once it is loaded into

the TEE’s secure context. Program state maintained in secure memory is also protected

from modification and rollback. However, for persistency, the TEE-server must save both

the ACL and the service state information to files in permanent storage. If the TEE-server is

breached, we assume the attacker can modify the files or restore them to an older version.

SGX’s threat model explicitly excludes cache timing, branch-shadowing, page-table, and

synchronization attacks [53, 100, 164, 217, 243, 279, 286]. It is up to the implementation to

mitigate the risk created by these attacks, as instructed by Intel’s enclave writer’s guide [130].

Defending against these attacks is orthogonal to the properties of TEE-SERVICE, which is

not in the scope of this chapter.

3.4 TEE-SERVICE Design

We now describe the design of TEE-SERVICE and how it addresses the challenges

discussed in §3.2. In TEE-SERVICE, every actor uses an identifier, A-ID, to authenticate

their identity with other actors (§3.4.1-§3.4.2). Every TEE-server has exactly one owner,
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which maintains a list of registered clients and their respective ACLs (§3.4.3-§3.4.4). The

service owner is only conceptually unique. In practice, the owner could reside in multiple

machines with replicated state (via its delegates, §3.4.4) to avoid being a single point of

failure. The clients know the A-ID of the owner and that of the TEE-servers they want to

use. To allow clients to audit the service state, each server maintains a service-specific state

with a revision number that the clients can monitor (§3.4.5).

We show the high-level design of TEE-SERVICE in Fig. 3.2, and the detailed properties

and relations of the actors we introduced in §3.3.2. In addition to the service owner, clients,

and TEE-servers, we show another actor, namely delegates, which are permitted to perform

certain operations on behalf of the service owner, preventing the owner from becoming a

performance bottleneck. For example, the owner can permit a delegate to approve the ACL

version of a server (§3.4.4).

3.4.1 Actor Identity – A-ID

TEE-SERVICE allows actors to identify each other using an Actor-ID (A-ID). A-ID is an

integral part of the TEE-SERVICE secure communication protocol and therefore cannot be

forged (see §3.4.2). To enable secure communication, every actor generates private-public

key-shares, which will later be used to establish shared communication secrets with other

actors. To couple actors’ identities with the secure communication secrets, TEE-SERVICE

uses the cryptographic digest of the actor’s public key share as A-ID.

For instance, in Intel SGX [131], the key sharing cryptographic algorithm is Elliptic

Curve Diffie-Hellman (ECDH) [202], and the private and public key shares are a,Ga,

respectively. The A-ID is then computed as the SHA-256 digest of the public key share Ga,

namely A-ID=SHA-256 (G ·a). This definition of A-ID couples an actor’s identity to the

shared secret established with it.

In TEE-SERVICE, the owner advertises its A-ID to the clients in a secure way (i.e., by

publishing a certificate of the A-ID signed by a known certificate authority). When the
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Figure 3.2: TEE-SERVICE Architecture.

owner contacts a TEE-server for the first time, the server generates its private public key

shares, derives its own A-ID, and records the owner’s A-ID. In turn, a client communicates

its A-ID to the owner when registering to use TEE-SERVICE for the first time.

3.4.2 Trusted Communications

Secure communication between actors is key to the security of TEE-SERVICE. While it

is desirable to simply use existing TLS implementations [119], these do not provide means

for authenticating the TEE hardware or the specific software on top of the TLS secure

session.

Actors must verify the identity, A-ID, of the party with which they communicate, and

trust that the communication is confidential, integrity protected, and not a replay of an

older communication. TEE-SERVICE actors communicate securely by establishing a shared

cryptographic secret (e.g., using ECDH [202]). The TEE-SERVICE protocol augments the

SGX remote attestation [131, 138] to address the challenges discussed in §3.2. For instance,

using vanilla SGX attestation does not allow a remote party to identify the specific server,

i.e., that this physical server is managed by the service owner, or that this is the same server

that the client communicated with prior to a software update.
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Figure 3.3: Using TEE attestation to establish secure communication (§3.4.2).

Bootstrapping Trust Between a Server and a Client. When an actor communicates

with a TEE-server for the first time, the TEE-server uses TEEs’ attestation mechanisms [1,

106, 138, 139] to prove that it is running in a genuine TEE and to establish a shared secret

with the actor, as shown in Fig. 3.3: The TEE-server loads the trusted service code into

the TEE’s secure memory (step 1). To verify the authenticity of the code, the TEE checks

that the code’s signature matches owner’s public key (step 2). To establish a shared-secret

for secure communication, the service generates a separate private-public key share a,Ga

(step 3). To prove that the service code is indeed running in a genuine TEE hardware, the

TEE-server uses the TEE’s attestation API to access the attestation key. The server uses

the attestation key to sign the blob comprising the trusted service code, the owner’s public

key, and the key share Ga (step 4) and sends it to the client (step 5). The client can then

verify the attestation signature [1, 139] on the blob and trust that the public key share Ga

(and hence the server A-ID) belongs to the specific service code with the matching owner’s

signature, running on a real TEE. The actor sends the server its public key share Gb (step 6),

which is then used by the server to compute the actor’s A-ID. The server verifies that the

actor represented by the computed A-ID is permitted to receive services. The rest of the

communication is secured by the master secret Gab (step 7).

Secure Communication Session. After establishing the shared secret, Gab, (step 7 in
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Fig. 3.3), the client initiates a communication session with the server to request services.

The server and the client use the shared-secret together with random nonces they generate

to create an ephemeral AES-GCM session-key according to NIST guidelines [62, 204] and

similar to TLS 1.2 [119]. Every message has a sequence number and AES-GCM tag to

prevent replay or tampering.

Securely Storing the Communication Secrets. To enable future communications with

the same clients, even after a server restart, the server needs to persistently store the shared

secrets. TEEs provide a mechanism to store data on persistent storage using a key that is

derived from the TEE-machine’s identity, the digest of the software running in the TEE,

and the owner’s public key that is used to sign the software [26, 29] (step 2 in Fig. 3.3). In

TEE-SERVICE, the shared-secret, Gab, is stored to persistent storage in a way that only

allows the specific TEE-server with a specific software version to retrieve it whenever TEE-

SERVICE restarts. If the owner updates TEE-server’s software, the shared secret can no

longer be loaded from persistent storage, forcing the server and the client to re-establish the

shared secret. Since the client has to participate in re-establishing a new secret, it will detect

the software change and can refuse to communicate with the new software. Section §3.4.5

further elaborates how TEE-SERVICE securely maintains the service state after software

update.

3.4.3 The ACL – Granting Access to Services

In TEE-SERVICE, the owner can manage what services are accessible to which clients.

The owner manages client-specific Access Control Lists (ACLs) on every server, identifing

clients by their respective A-IDs.

TEE-Server Setup. The first actor to communicate with the server is considered its

owner. During the attestation process [1, 138, 139] (Fig. 3.3) the owner records the server’s

public key, Ga, and computes the corresponing server’s A-ID. The owner sends the server’s

AID to the clients, which are allowed to request services from the specific server. The owner
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then registers with the TEE-server the A-IDs and permissions of the clients.

Accepting New Clients. After setup, the TEE-server only accepts communication from

clients with public keys matching the A-IDs registered by the owner. When a client contacts

the TEE-server for the first time, she verifies server-machine is the one intended by the

owner in two ways. First, the client derives the A-ID of the server from the server’s public

key, Ga, and compares it to the server’s A-ID that was reported by the owner earlier. Second,

the client requests the server to report its owner’s A-ID, and compare it to the owner’s

identity it received when registering for the TEE-SERVICE. Since the server software is

running on a genuine TEE (as proven by the attestation process) the client trusts that the

server cannot lie about its owner identity.

3.4.4 Preventing ACL rollback

For ACLs to persist across server reboots, they are securely serialized to the file-system

using the TEE’s serialization mechanisms [1, 29, 131] (e.g., sealing in Intel SGX). TEE

serialization mechanisms provide integrity protection but do not defend against an adversary

reverting a file to an older version. The lack of rollback protection presents an attack vector

on ACLs. For instance, if the owner decides to revoke access permissions for a specific

client, the access-revocation can be reverted by replacing the ACLs with older versions.

TEE-SERVICE addresses the Secure Access Control challenge (§3.2) by allowing the

owner to verify the version of the ACLs before the server is allowed to serve clients. In

TEEs, the integrity protection of securely stored files is provided by a cryptographic MAC.

TEE-SERVICE uses the MAC of the ACLs as version information. Whenever the server is

restarted, the owner checks that the version is correct, and only then allows the server to

serve requests. Since the server runs inside a TEE, its code cannot be modified to falsely

report the version or bypass the service restriction until the owner’s approval is received.

Lastly, since the communication between the owner and the server is replay-protected

(§3.4.2), it is impossible to replay the owner’s approval of the MAC at a later time. In the
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threat model (§3.3), we assume the owner’s machine is trusted and cannot be reverted.

Requiring all servers to contact the owner upon every restart is a performance bottleneck.

To overcome the bottleneck and make TEE-SERVICE scalable, the owner can delegate the

approval of the ACL-versions to special delegates, as depicted in Fig. 3.2. Delegates are

clients of TEE-SERVICE which are only allowed to approve ACL versions. Delegates run

inside a TEE (and hence are trusted) and securely save the appropriate ACL-versions of

TEE-servers on local storage. To prevent rollback of the delegate’s state, the owner verifies

delegates’ state version before they can approve other TEE-servers. Upon an ACL update,

the owner updates all the delegates with the latest approved ACL version.

3.4.5 Non-revertible Service State

State Revision Number. We now describe how TEE-SERVICE addresses the State

Freshness challenge (§3.2). For the service to be useful, its state (e.g., medical records,

bank account balances, or cryptographic keys) needs to be persistent across restarts. In

TEE-SERVICE, the state is securely stored using the TEE storage API (e.g., SGX sealing),

which exposes the service state to rollback attacks.

To detect state rollbacks, TEE-SERVICE maintains a per client state revision number

representing the state version. Every state-modifying operation advances the revision

number of the affected client(s). When a client requests a service (either state-modifying or

state-preserving), the server replies to the request with the current state-version, which the

client then records. The state-version should always advance as a monotonic non-decreasing

counter. If a client receives a state-version lower than expected, she detects that the state has

been rolled back. Since the Management Engine (ME) can only support a limited number of

monotonic counters (see §3.2) the ME may not be suitable for keeping track of clients’ state

revisions.

In §3.5, we discuss a TEE-SERVICE use-case of a service providing cryptographic

operations. The classification of operations for this use case is depicted in Table 3.1. In
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this example, the operations for creating new keys are considered state-modifying services,

while the operations which depend on existing keys (encryption, signing etc.) are considered

state-preserving operations.

Limitations. In TEE-SERVICE, we assume that every client is only interested in

making sure that their own transactions were not reverted. Namely, when a client C0

performs two operations, they want to verify that the second operation is executed on a state

which represents the execution of previous operations they requested. Between these two

operations, another client (C1) may have requested their own operations, which may have

been reverted by an attacker. However, by inspecting the state revision number, client C0

trusts that their prior operations have not been reverted. C1 can also inspect the state to

detect that it has been reverted. We discuss how clients can collaborate to receive stronger

guarantees in §3.8.

Enabling Server’s Software Update. We now explain how TEE-SERVICE addresses

the Trusted Updates challenge (§3.2), and allows continued operation even if the server

software is updated. While TEEs ensure code integrity, it is up to the service implementation

to provide a secure way to continue operation, with the same state, after a software upgrade.

To solve this challenge, TEE-SERVICE uses different keys to store the service state and

the communication keys. The service state is secured using a storage encryption key, which

is derived from the TEE-machine identity, the owner’s public key (which was used to sign

the software), and a secret-share provided by the client. This storage key is independent of

the server’s software version. Using this storage mechanism allows future versions of TEE-

SERVICE to load the service state from persistent storage given the following conditions: it

runs on the same physical machine, the server’s software was signed by the same owner’s

public key, and the client gave permission (via providing her secret-share).

The communication keys (Gab in Fig. 3.3), however, are stored using a key derived from

the specific software version and cannot be reloaded by the updated software. This scheme

prevents the owner from updating the software without notifying the clients: When a client
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1 GEN_KEY_RSA Allow Deny

2 GEN_KEY_ECDSA Deny Deny

3 GEN_KEY_AES Allow Deny

4 UPLOAD_KEY Deny Deny

5 SIGN_RSA Allow Allow

6 SIGN_ECDSA Deny Allow

7 ENCRYPT_AES_GCM Allow Deny

8 DECRYPT_AES_GCM Allow Deny

9 AES_CMAC Allow AllowSt
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Table 3.1: ACLs of example TEE-CRYPT-clients (C0, C1). Services 1–4 are considered state-
modifying as they alter encryption keys. Requests for these services will advance the state revision
counter. Services 5–9 depends on the service state, but don’t modify it (§3.4.5).

communicates with the server with new software, it has to negotiate new communication

keys. The client validates the server’s identity via the server’s Actor-ID, verifies it accepts

the software update and then establishes new communication secrets. More details regarding

such persistent storage keys in Intel SGX are described in §3.6.

3.5 TEE-SERVICE Use Cases

TEE-SERVICE is useful for managing services where different clients have different

access permissions and security objectives, such as managing bank accounts, medical

records, and cryptographic keys. We will focus on the cryptographic services use case as

the services and their performance can be compared to existing hardware solutions—HSMs.

We present and analyze the implementation of TEE-CRYPT—the example secure service

that we built using TEE-SERVICE.

TEE-CRYPT provides cryptographic services, similar to software solutions such as

OpenSSL, SoftHSM, and BouncyCastle [9, 211, 212], but with stronger security guarantees.

A system breach of any of the above solutions immediately enables the attacker to retrieve the

cryptographic keys, while in TEE-CRYPT, they are protected within the TEE. For example,
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TEE-CRYPT can protect OpenSSL [212] from security bugs such as HeartBleed [74]: The

HeartBleed vulnerability allows an attacker to read data from the web server’s heap (through

the Heartbeat message), which may contain private keys. If OpenSSL is integrated with

TEE-CRYPT (as we evaluate in §3.7.2) the memory containing the key material is protected

within the TEE.

At the other extreme, Hardware Security Modules—HSMs (e.g., [86, 117, 261, 268])—

provide strong protection against advanced physical attacks and self destruct if an attacker

physically tampers with them [203]. This threat model is not necessarily reasonable for all

users.

TEE-CRYPT presents a sweet spot between classical software and hardware solutions—

TEE-CRYPT provides TEE-backed security guarantees at a fraction of the cost of a low-end

HSM. Due to the mechanical defenses built into HSMs and their specialized cryptographic

hardware (depending on the model), their cost ranges between $2,500–$30,000 [6]. Com-

pared to HSMs, an SGX-capable machine can cost as little as $500 [23].

3.5.1 Securing Web Servers

TEE-CRYPT is useful when a distributed set of machines wishes to share crytographic

keys while protecting the keys from exposure if any machine is compromised. Moreover,

TEE-CRYPT can restrict how various actors in the system are allowed to use the keys. In

such a scenario, TEE-CRYPT can replace many HSMs.

An example use case for such distributed trust management arises in Content Delivery

Networks (CDN) such as CloudFlare and Akamai. A CDN company hosts web services for

its customers on a remote data center, supporting both non-encrypted (HTTP) and encrypted

(HTTPS) access to the websites they host.

Currently, a CDN’s customers (the website-owners) must provide the CDN with their

private key. This model forces the custumers to trust the CDN’s security practices and that

the CDN will not give away the customer’s private key (e.g., to law-enforcement). If the
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Figure 3.4: Using TEE-CRYPT to protect web servers deployed by a Content Delivery Network
(CDN). The TEE-client on the customer’s side (left) is only permitted to upload keys or generate
them within the TEE. On the other hand, the TEE-client running on the CDN’s network (right) is
only permitted to request signing operations using the keys that already exist.

customer’s private key is exposed, an attacker can impersonate the customer’s web server.

The impersonating web server can then be used to retrieve web clients’ credentials.

Once the breach is detected, the private key and its matching certificate must be revoked

by the customer. However, revoking certificates is not always effective [8, 11], and the

attacker may be able to keep impersonating the customer for a while, even after the breach

is detected.

TEE-CRYPT Solution. To provide HTTPS communication on CDN servers, TEE-

CRYPT supports algorithms such as RSA, ECC [201], and AES-GCM [204]. Table 3.1 lists

the different operations supported by TEE-CRYPT. Even if the CDN is breached, there is no

need for certificate revocation, because the CDN has no access to the key. Once the breach

is mitigated, the attacker will no longer be able to impersonate the web server because they

never get access to the private key.

In this TEE-SERVICE use case, the website owner (CDN’s customer) is the owner,

and the machines operated by the CDN are the servers. There are two classes of clients

in this scenario, as depicted in Fig. 3.4. The first class of clients (left side in Fig. 3.4)

are the employees of the website owner who are designated to manage the signing keys.

These clients require permissions to generate cryptographic keys or upload them to TEE-

CRYPT. They do not need permissions to use the keys themselves. The second class of

TEE-CRYPT clients (right side in Fig. 3.4) are the web servers maintained by the CDN

company. To provide HTTPS access to a website, the web servers need to be able to sign
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the TLS handshake parameters [119]. From the ACL perspective, the web servers (acting as

TEE-CRYPT-clients) require permissions to use the cryptographic keys, but they don’t need

permissions to generate, read, or upload keys to TEE-CRYPT.

Security Analysis. If the web server machine is breached (acting as the TEE-SERVICE

client), the attacker can request signing operations from the server until the breach is

detected. Without TEE-CRYPT, the attacker has access to the private RSA key material,

therefore the key would have to be revoked. Thanks to TEE-CRYPT, there is no need to

revoke the key, because it will never be exposed to the attacker.

3.5.2 Secure Authentication

Modern Linux systems employ Pluggable Authentication Modules (PAM) [239] as a

unified authenticating mechanism. According to NIST guidelines [108], users’ passwords

should be saved in a salted, hashed form. Password hashes are typically saved in a file,

sometimes known as the shadow file. In a typical organization, the IT administrator defines

authentication policies that are then enforced by the PAM. When a PAM initiates an au-

thentication request, it salts and hashes the password that the user enters and performs a

comparison with the value stored in the shadow file (Fig 3.5a).

If a system is compromised, an adversary gains access to the shadow file and can mount
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dictionary or rainbow table attacks [207]. To increase the difficulty of mounting these

attacks, the selected hash algorithm is time and memory intensive. However, a hacker can

speed up these attacks by leaking the shadow file and then use specialized hardware and

distributed computing across multiple machines [179], utilizing frameworks such as John

the Ripper [214]. Because the accelerated computation is done off-site, this is considered an

offline attack.

TEE-CRYPT Solution. TEE-CRYPT mitigates offline attacks on a leaked shadow

file by binding the one-way hashing computation to a specific physical machine. This

concept is illustrated in Fig. 3.5b. The one-way function is extended by computing the

AES-CMAC [118] (a keyed hash) on the salted hash, and the resulting MAC is saved to the

shadow file. When a user attempts to log in to the system using a password, the modified

PAM salts and hashes the password as in existing implementations, but also requests TEE-

CRYPT to compute AES-CMAC on the salted hash, using a key protected within the TEE.

The resulting MAC will then be compared to the value stored in the shadow file.

In this TEE-SERVICE use case, the IT administrator of an organization is the owner and

clients are all the systems, running PAMs which authenticate users. The servers are TEE-

capable machines in the organization running TEE-CRYPT and computing the AES-CMAC.

Security Analysis. If one of the clients running PAM is breached, the attacker’s ability

to guess passwords via a dictionary attack is limited to the maximum request rate of TEE-

CRYPT. It is not possible to accelerate the attack by leaking the shadow file, as the one-way

function can only be computed using the AES-CMAC key that is tied to the server machine.

Note that any login attempt performed while the machine is infected will expose the user

password as it can be intercepted when it is sent to the server. Using TEE-CRYPT to secure

authentication mechanisms builds upon the status quo mechanism of salting and hashing,

therefore it does not introduce any new attack vector.
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3.6 Implementation

We implemented TEE-SERVICE using Intel SGX. According to the AMD SEV technical

preview [1], TEE-SERVICE can also be implemented using SEV. In SGX, the code running

within TEE is called a secure enclave. We used SGX Linux SDK/PSW version 1.9.100,

driver version 0.10. For attestation and shared-secret establishment, we used the SGX

SDK’s [131] default implementation, which uses ECC cryptography with a key size of 256

bits. The implementation consists of 7566 lines of C/C++ code, and 2848 lines of Python

code. The trusted code consists of 3574 lines in C/C++.

To support cryptographic algorithms, TEE-CRYPT’s implementation uses both Intel’s

Integrated Performance Primitives (IPP [126]) cryptographic library and LibreSSL [166],

version 2.4.4. Secure storage of ACLs, shared communication secrets, and the service state

is implemented by using SGX’s sealing API [29, 131]. The sealed contents in SGX’s sealing

mechanism are encrypted using AES-GCM and contain a 16-byte MAC. In TEE-SERVICE,

the version identifier of ACLs (§3.4.4) is the MAC computed during the sealing process.

In the SGX API, there are two available mechanisms for deriving sealing-keys for

storage. In the first mechanism, the TEE derives the sealing-key from the owner’s public key

used to sign the server software (step 2 of Fig. 3.3). Using this key derivation mechanism,

different software versions of the server enclave can unseal each other’s files, as long as

they are signed by the same owner’s public key. In the second key derivation mechanism,

the TEE derives the sealing-key also from the cryptographic digest of the server software.

In contrast to the first key-derivation mechanism, only the exact same server software can

unseal the files it previously sealed. TEE-SERVICE uses both mechanisms for deriving

sealing keys to provide Trusted Updates (§3.2).

The first challenge for Trusted Updates is enabling modification of the TEE-server

software without having to reconfigure the ACLs and without resetting the service state.

Therefore, TEE-SERVICE protects both the ACLs and the service state by using a key that

the TEE derives from the owner’s public key. This allows future versions of the server to
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unseal the ACLs and the service state when they are loaded from the file system.

The second challenge for Trusted Updates is to make sure the clients are informed when

the server code is updated. To this end, TEE-SERVICE seals the shared communication

secrets with a sealing-key, which the TEE derives from the specific server’s code. This

ensures that any future versions of the server will not be able to read the communication

secrets and will be forced to renegotiate the secrets with the clients. Since the clients

have to participate in the renegotiation, this key derivation mechanism prevents the server

from updating its software without notifying the clients. When a client renegotiates the

communication keys, she receives the signature of the server’s new software (§3.4.2) and

decides if she accepts the server’s new implementation.

3.7 Evaluation

In this section, we address the following questions about TEE-SERVICE: What is the

latency and throughput of requesting services (§3.7.1)? What is the latency and throughput

of our case study cryptographic service, TEE-CRYPT, and how does it compare to existing

secure alternatives (§3.7.1)? What is the integration effort and the performance impact of

using TEE-CRYPT on real applications? Specifically, we evaluate the performance impact

of TEE-CRYPT on web servers (§3.7.2) and on the Linux Authentication Module (§3.7.3)

we discussed in §3.5.

We evaluated TEE-CRYPT on a Supermicro server with 64 GB DDR4 RAM @ 2133

MHz and an Intel Core I7-6700k 4GHz with 8 logical cores. Dynamic frequency is disabled,

and the operating system is Ubuntu server 16.04 LTS. Unless stated otherwise, requests

were sent from a separate machine with 32 GB DDR4 RAM @ 2400 MHz and an Intel

i7-7700HQ 2.8GHz, over a 1 Gb/sec link. Average link latency is 0.78 ms.
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3.7.1 Micro-Benchmarks

Latency and Throughput of Native TEE-SERVICE. To evaluate the latency incurred

by TEE-SERVICE, we implemented a ping operation, which simply echoes the data sent to

the server back to the client. In a loopback test (i.e., excluding network delays), ping latency

is 35.09 µ-seconds. The throughput is 55,680 requests/second.

Latency and Throughput of TEE-CRYPT. We evaluated the throughput of TEE-

CRYPT for AES-GCM, RSA, and ECDSA algorithms. The implementation of the TEE-

server consists of a dispatcher thread listening for requests arriving on the network interface

and worker threads executing within the TEE.

The throughput of TEE-CRYPT scales with the number of worker threads. We evaluated

the throughput of the RSA signing algorithm between two machines for three different key

sizes: 2048, 3072, and 4096 bits. Fig. 3.6 depicts the transactions performed per second

vs. the number of worker threads. We evaluated the ECDSA algorithm for the following

elliptic curves: secp256k1 (256 bits), secp384r1 (384 bit), and secp521r1 (521 bits). Fig. 3.7

depicts the achieved transactions per second vs. the number of worker threads.

We compare the throughput of TEE-CRYPT with throughputs of four HSMs. Fig. 3.8

shows a normalized comparison of TEE-CRYPT and the four HSMs. TEE-CRYPT per-

forms 4× more RSA-2048 operations per second than the Gemalto A700 HSM, 8× more

ECDSA-256 operations than KeyPer Professional HSM, and 2.7×–14.9× more AES-GCM

encryption operations than IBM 4767 and Gemalto A700 HSMs, respectively.

3.7.2 Securing Web Servers’ Private Keys

We now evaluate the performance impact of TEE-CRYPT for securing web servers’

private keys, as we discussed in §3.5.1. We evaluate TEE-CRYPT’s performance impact on

two web servers: NGINX version 1.12.2 [200] and Lighttpd version 1.4.41 [167]. NGINX

and Lighttpd use OpenSSL [212] internally to support TLS 1.2 [119]. In an unmodified

setup, the web server’s administrator would place the server’s private key on the server’s
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Figure 3.6: TEE-CRYPT-RSA Throughput scalability. The number of threads running is the worker
threads + one dispatcher thread. Standard deviation is below 5%.

machine, which will be loaded in plaintext to the web server’s memory. When a TLS

coonection is made to the web server and the server performs the TLS handshake, the server

uses the private key (via OpenSSL) to sign the handshake parameters.

Integration Effort. We modified OpenSSL (version 1.0.2j) to utilize TEE-CRYPT for

signing operations. The majority of OpenSSL is unmodified and run outside of SGX. The

web server key pair is generated using TEE-CRYPT and the private key is protected within

the TEE. Only the public key, together with a certificate, is exposed to the (potentially

compromised) web server application. During the TLS handshake, the modified OpenSSL

(running outside of SGX) requests TEE-CRYPT to sign the TLS key-exchange parameters.

OpenSSL then passes the signed key exchange parameters to the web server, which in

turns sends them to the web client. The TLS handshake continues unmodified from here

on. Modifying OpenSSL to use TEE-CRYPT required 130 lines of C code. We tested the

patched web servers against Firefox 51.0.1 on Linux and Windows 10.

Performance Impact. We compare the throughput of the modified TLS web servers to

the original versions. We use the http load [7] benchmarking tool to measure the time to

complete 10,000 HTTP GET requests (250 in parallel) for a 20 KB file. We evaluate the

throughput for RSA keys of the following sizes: 2048, 3072, 4096 bits. The results are
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Figure 3.7: TEE-CRYPT-ECDSA Throughput scalability, for three elliptic curves: secp256k1 (256
bits), secp384r1(384 bit), and secp521r1 (521 bits). The total number of threads consists of the
worker threads + one dispatcher thread. Standard deviation is below 5%.

depicted in Fig. 3.9, showing that TEE-CRYPT incurs on average 33% throughput reduction

in exchange for adding substantial security.

3.7.3 Securing Authentication Mechanism

We now evaluate the performance impact of TEE-CRYPT for securing authentication

mechanisms and eradicating offline attacks on the PAM shadow file, as we discussed

in §3.5.2.

Integration Effort. We implemented a PAM module that mimics the pam unix module

behavior, but also computes an AES-CMAC on the salted hashed password using TEE-

SERVICE (see Fig. 3.5b). The CMAC key is protected within the TEE, binding it to the

physical machine. When a user wishes to authenticate, they enter their password and the

PAM module is invoked. Next, the module computes the salted hash in the same way the

pam unix module does, and sends an AES-CMAC request to TEE-SERVICE with the salted

hash. Finally, the resulting MAC is compared to the value stored in the shadow file. The

TEE-SERVICE PAM was implemented in 147 lines of code.

Performance Impact. We developed a test application to measure the performance of

the TEE-SERVICE augmented PAM module. We measure the time for the test application
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Figure 3.8: Normalized transactions per second (TPS) of TEE-CRYPT vs. 4 Commercial HSMs:
KeyPer Professional [268], Gemalto Network HSM A700 [86], Thales nShield 6000+ [261], and
IBM 4767 [117] (not all specifications provide numbers for all operations).

to complete 10,000 consecutive authentication requests. The baseline implementation

(without TEE-SERVICE) is capable of performing 496 authentications per second, while the

augmented PAM module (with TEE-SERVICE) can authenticate 471 users per second; only

a 5% degradation in throughput.

3.8 Related Work

TEEs in general and Intel SGX in particular have proliferated research on building

secure systems [34, 40, 50, 115, 240, 297], finding new attacks [53, 162, 164, 279, 286] and

proposing defenses [47, 160, 169, 180, 246, 250].

Prior work such as ROTE [180] and LCM [47] suggested mechanisms to prevent rollback

attacks in a multi-party system that runs on TEEs.

ROTE [180] is a mechanism for mitigating rollback attacks in distributed systems

using SGX. However, it requires extensive collaborations between the participating entities,

and can be defeated if the adversary controls enough SGX-capable machines. A typical

deployment of a service is done using a single cloud provider, e.g., Google Cloud, Amazon

EC2, Microsoft Azure, etc. In this scenario, the cloud provider can compromise 100% of
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Figure 3.9: Performance impact of TEE-CRYPT on pages served per second over HTTPS for
Lighttpd (Light) and NGINX (NGX) web servers, for three RSA key sizes: 2048, 3072, and 4096
bits. TEE-CRYPT incurs reasonable overhead, while substantially improving security.

the machines, defeating the distributed trust mechanism. TEE-SERVICE takes a different

approach of assuming that the owner has at least a single machine that is not compromised,

and thus provides a simpler solution with less mandatory coordination between the enclaves.

LCM [47] is a technique for collaborating clients to detect rollback attacks. However,

while clients are interested in verifying that their transactions have not been reverted, they

may not be willing to invest the resources required to coordinate with other clients. TEE-

SERVICE provides a means for every client to ensure that their transactions were not reverted,

without contacting other clients. TEE-SERVICE can potentially be extended to support

collaboration among clients by allowing them to receive from the server a hash of all the

version numbers, and compare it with each other.

Ryoan [115] is a framework that allows users to trust that code running inside a TEE does

not leak private data. SCONE [34] is a mechanism that uses SGX to protect Docker [184]

containers. However, both Ryoan and SCONE do not address the need of service owners to

upgrade their software while preserving the normal operation from the clients’ perspective.

Moreover, neither Ryoan nor SCONE has a mechanism to allow clients to track the service

state and protect from rollback attacks.
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3.9 Conclusion

In this chapter, I introduced TEE-SERVICE, a remote secure services management

framework running on TEEs. TEE-SERVICE enables machines in a data center with no

TEE support to use secure services remotely, while improving TEEs’ security guarantees.

TEE-SERVICE provides service owners with TEE-backed secure management of access

permissions and enables deployment of software updates. TEE-SERVICE also allows

service-clients to verify that they are communicating with the servers that the service owner

intended, that the service state has not been tampered with or rolled back, and that the server

software has not been modified.

Using TEE-SERVICE, I implemented a software security module, TEE-CRYPT, that

provides cryptographic services while improving security guarantees of classical software

solutions. I used TEE-CRYPT to improve the security of an authentication mechanism

(PAM) in Linux. I also integrated TEE-CRYPT with the NGINX and Lighttpd web servers,

demonstrating that TEE-CRYPT is a viable solution to protect the web servers’ private keys.

TEE-CRYPT outperforms commercial HSMs by a factor of 4×-8× for RSA and ECDSA

operations, and 2.7×-14.9× for AES-GCM encryption, at a substantially lower cost (more

than 5×).
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CHAPTER IV

SovereignTEE: Enabling Large Scale Adoption of

Trusted Execution in the Cloud

4.1 Introduction

In the previous chapter I proposed a framework for allowing service owners to manage

configuration and ACLs of distributed services and end-users (service clients) to verify the

services’ state has not been reverted without their knowledge. In this chapter, I tackle two

additional major challenges for practical deployment of trusted services: scaling attestation

and migrating trusted services.

As a reminder, Fig. 4.1 illustrates the existing SGX ecosystem and the relationship

between the service owners (the cloud customers), the cloud provider, and the end users

in the cloud using SGX. Unfortunately, the existing SGX ecosystem poses two addtional

substantial impediments to scalable adoption of trusted execution in cloud services.

Cloud Server

Hosted Service 
Enclave

End-UserService 
Owner Cloud Provider

1. Verify Enclave
2. Send private 

data

1. Write Service
2. Sign Enclave
3. Ship to Cloud

Figure 4.1: Hosting SGX-powered services in the Cloud. The Service owner signs the enclave
implementing the service. The cloud provider chooses a machine to host the service enclave. The
end-user remotely verifies the enclave authenticity before sending it private data.
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First, SGX’s attestation mechanism—the root of trust upon which SGX’s security

guarantees are based—requires active participation of the hardware vendor (Intel) each

time an end user connects to a secure service. Service owners must be vetted by Intel to

register their software signing key [130, 131] and end users must contact Intel’s attestation

servers each time they validate security guarantees [122, 139]. Since attestation is machine-

specific, each user must repeat the attestation process whenever they connect to a different

hardware device or whenever the service to which they connect migrates to a different

machine. This mechanism interposes the hardware vendor into the relationship of the cloud

provider, service owner, and end user, creating new challenges for scaling services. In other

words, establishing trust (per user, per server, and sometimes per connection) depends on

the availability of the hardware vendor’s attestation servers, which neither the service owner

nor the cloud provider control.

Second, SGX’s mechanisms are tightly coupled to a specific piece of hardware. For

example, SGX’s secure storage mechanism [29] relies on sealing keys that can only be

regenerated on the same physical machine. However, a fundamental tenet of virtualization

in a cloud computing environment is that hardware is fungible. Cloud providers rely on

mechanisms like live migration [46, 66, 275] to perform regular system maintenance and

to optimize the packing of virtual machines onto available hardware [36, 165, 248]. Upon

hardware failure, services can be rapidly restarted on a replacement system. Unfortunately,

SGX’s sealing and attestation mechanisms do not enable secure transfer of service state

between machines—a serious impediment to typical cloud operations. Today, a service

developer must roll their own application-specific solution to migrate data [41, 225], export

files, distribute and share keys, or provide failure recovery [195, 257].

Recent work introduced frameworks to leverage SGX for secure execution [34, 41,

115, 240, 264]. Frameworks like SCONE [34] and Graphene [264] enable easy porting of

existing applications to run in SGX enclaves. However, they neither address migration of

enclaves across machines nor do they focus on providing availability and failure recovery.
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VC3 [240] introduces a mechanism to prove to an end-user that an enclave indeed runs on

a given cloud provider’s machine, but it does not decouple the hardware vendor from the

attestation process. As a result, the cloud provider lacks full control over service availability.

Existing proposals [17, 41, 105, 218] for migrating secure enclaves or secrets assume that

both the source and target machines are operational simultaneously, which can lead to

significant over-provisioning of cloud resources and does not allow recovery of secrets if

the source machine is no longer available.

No existing framework (1) decouples the hardware vendor from the attestation process

required upon connection establishment, and (2) supports secure state transfer/sharing and

seamless restart that are key to achieving failure recovery and high availability.

To address these two critical deployment and scalability challenges, in this chapter I

introduce SovereignTEE: a framework that shifts the responsibility of managing trusted

execution from the hardware vendor to the cloud provider. This paradigm of autonomous

attestation removes the hardware vendor as a mandatory participant in each attestation

operation while preserving SGX’s security properties (i.e., confidentiality and integrity of

data).

Decoupling the hardware vendor from the management of the trusted execution environ-

ment also enables the cloud provider to flexibly manage secure storage, thereby enabling

failure recovery, high availability, and seamless data migration, without compromising

integrity or confidentiality.

To allow the cloud provider to support high availability independently of Intel’s infras-

tructure, SovereignTEE interposes itself as an intermediate attestation authority. Sovereign-

TEE is attested by Intel and hence trusted by end-users. This setup decouples cloud users

from Intel’s attestation services [139] thereby, eliminating the dependency on the availability

of the hardware vendor.

To enable failure recovery and secure migration of data between machines in the data

center, SovereignTEE generates and transparently manages storage keys. Existing techniques
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for enclave migration [17, 218] rely on the source machine and enclave to be fully functional

so they can actively participate in the data transfer. Furthermore, these methods assume

that data is only accessed by a single enclave at a time. In contrast, SovereignTEE enables

failure recovery even if the source machine cannot boot and allows multiple enclaves to

access the same secure storage simultaneously. Using its attestation scheme, SovereignTEE

allows securely sharing the storage secrets with other machines belonging to the same cloud

provider (§4.3). The key derivation scheme ensures only enclaves written by the same owner

can access the storage.

I demonstrate SovereignTEE’s ability to support high-availability (via autonomous attes-

tation) and failure recovery (via secure data sharing) with five case studies of widely-used

real-world systems, including two web servers, two databases, and a secure communi-

cation tunnel (§4.4). More specifically, I first show how end-users can perform remote

attestation with the cloud service enclaves and verify their authenticity with the same trust

level provided by the unmodified SGX attestation. Next, I demonstrate the ease of data

sharing between instances running on different machines. I then show how SovereignTEE

transparently enables failure recovery when the applications are restarted on a new machine,

improving availability by an order of magnitude. I additionally show that SovereignTEE

improves performance: up to 2–7% in Kops/sec and 3.5–6.5% improvement for read and

write throughput (§4.4.2). Finally, I show that SovereignTEE requires minimal integration

effort.

To summarize, in this chapter I make the following contributions:

• A new model for managing secure enclaves in a cloud infrastructure, which decouples

the hardware and its vendor from the services running on it and thereby enables highly

available services

• A secure key distribution mechanism that enables seamless data migration and data

sharing between servers running in the same cloud infrastructure, thereby enabling

efficient failure recovery
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• An evaluation of real-world applications to demonstrate the benefits of SovereignTEE.

SovereignTEE improves services performance by 2–7% and also improves availability

by an order of magnitude

4.2 Background & Motivation

In this section, we describe the necessary background on Intel SGX that is central to the

design of SovereignTEE. For better readability of this chapter, some of the details described

in previous chapters are reiterated here. We point out the challenges and limitations of the

current ecosystem and motivate the need for SovereignTEE.

SGX Basics. SGX [29, 140] enables a user process to create one or more trusted

execution contexts, called secure enclaves, that are protected from other enclaves and

privileged software, such as the Operating System (OS), hypervisor, and firmware (BIOS).

At enclave initialization, code and data are copied into the enclave memory using the SGX

API [136].

Code residing inside the enclave memory is considered trusted. Any other code, includ-

ing the OS or the hypervisor code, is considered untrusted. The trusted and untrusted parts

can request services from each other by invoking enclave calls (ecalls) and out calls (ocalls).

In SGX nomenclature, the enclave code and the enclave-writer’s identity are represented

by two cryptographic digests called MRENCLAVE and MRSIGNER [131, 136], which we

further refer to as ENC-ID and SIG-ID, respectively. ENC-ID is the cryptographic digest

(SHA-256) of the code and data copied to the enclave memory at creation time. SIG-ID is

the cryptographic digest of the enclave creator’s public key, thereby representing the identity

of the enclave creator. We denote the ENC-ID and SIG-ID of an enclave e signed by owner o

as ENC-IDe and SIG-IDo, respectively.

The enclave creator further uses their private key to sign the value ENC-ID to prove the

authenticity of the enclave code and data to any 3rd party. The enclave’s digest (ENC-ID),

the enclave-writer’s signature on ENC-ID, and his public key constitute the enclave header
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END-ID = SHA-256( enclave code and data            ) 

Service owner’s signature on ENC-ID

Service owner’s public key SIG-ID   SHA 256Enclave 
header

Hosted service/enclave code and data 

Figure 4.2: Enclave and its ENC-ID and SIG-ID. The service owner uses his public key, identified
by SIG-ID, to sign ENC-ID. ENC-ID and SIG-ID are used as identifiers of the enclave for loading,
attestation, and secure storage.

(Fig. 4.2).

The SGX SDK provides several architectural enclaves, signed by Intel, required for

launching and attesting (i.e, validating the authenticity of) user enclaves. A user enclave

can only be started after receiving a launch token from the architectural Launch Enclave.

For a user enclave to prove to external entities that it is indeed an SGX enclave (and not an

emulator), it must receive an attestation proof (called a quote) from the architectural Quote

Enclave [69, 130, 131]

Local and Remote Attestation. The attestation process allows proving to a (local or

remote) verifying party the integrity of (1) the enclave’s code (ENC-ID), (2) the enclave

creator’s identity (SIG-ID), and (3) a key-share for establishing a shared secret between the

parties.

The key-share serves an important role in the attestation process, as it ties the attestation

to a specific secure session, based on the shared-secret that is established between the

proving and the verifying parties. The key-share is typically a Diffie-Hellman Key Exchange

handshake [202, 205], which proves to the remote verifier that there is no man in the middle

intervening in the key-exchange handshake. SovereignTEE replaces the key-share in the

attestation process with a SovereignTEE-specific public key, as we detail in §4.3.3.

SGX attestation can be performed locally with a neighboring enclave, running on the

same processor, or with a remote verifying party, running on a separate machine.

Local Attestation. To implement local attestation, the SGX API provides a mechanism

called reporting [29]. Fig. 4.3 depicts the reporting process. At a high level, during local
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Figure 4.3: Local Attestation. (1) The user enclave asks the processor to generate a CMAC on its
own ENC-ID, SIG-ID, and the digest (SHA-256) of the key-share, for a specific target enclave. (2)
The CMAC’d report is sent to the verifying enclave. which (3) requests the CMAC key from the
hardware, and then verifies the CMAC.

attestation, a user enclave performs attestation by proving to a local verifying enclave that it

is running on genuine SGX hardware.

To initiate local attestation, the user enclave requests the processor to generate a report,

containing the digest of the key-share1 (step 1 in Fig. 4.3). The processor verifies that the

request was executed within the user enclave and then generates a report containing the user

enclave’s identifiers, ENC-IDuser, and SIG-IDuser.

To target the report at a specific local verifying enclave, the processor computes a

Cryptographic Message Authentication Code (CMAC) of the report (step 2), using a key that

can only be derived using the verifying enclave’s identifiers, ENC-IDveri f y and SIG-IDveri f y.

To verify the report’s CMAC, the verifying enclave requests the processor to generate the

CMAC key (step 3).

To ensure that the CMAC key is only accessible to the verifying enclave, the processor

derives it from a report-key, known only to the processor, and the identifiers belonging to

the enclave requesting the key: ENC-IDveri f y and SIG-IDveri f y. Using the CMAC key, the

verifying enclave verifies the report and thereby trusts the user enclave is running on the

same processor as the verifier.

Remote Attestation. Enclaves perform remote attestation to prove to remote parties

1We simplified the reporting process for clarity.
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(e.g., end-users) the integrity of their code, the identity of the enclave creator (e.g., the service

owner), and the authenticity of the key-share. A user enclave starts remote attestation by

performing local attestation with the Quote Enclave as the verifying enclave. That is, the

user enclave proves to the Quote Enclave that it generated a specific key-share and that they

are both running on the same machine.

The Quote Enclave has sole access to an attestation key [51, 122], which it uses to sign a

blob containing the report. The process by which the Quote Enclave receives the attestation

key from Intel is called provisioning [122] and depends on a secret fused into the CPU at

manufacturing time [69, 136]. The signed blob is called a quote. The quote is returned to

the user enclave, which in turn sends the quote to the remote party.

The remote party cannot verify the quote on its own and must contact Intel Attestation

Service (IAS [139]) to verify the quote. IAS tracks all the attestation keys that have been

provisioned to Intel’s processors and can verify that the quote was signed by a genuine

Quote Enclave. IAS’s response is further signed by Intel’s private key to indicate Intel as the

attesting entity. The signed response effectively serves as a transcript that can be used at

any time by any party (e.g., a cloud end-user) to verify that the user enclave is a genuine

SGX enclave that generated the specific key-share.

Adoption Challenge 1. IAS must approve any remote attestation quote, making IAS a

potential scalability bottleneck and an impediment to high availability. In a typical enclave

use case, remote end-users establish trust with the service enclave by performing remote

attestation when they communicate for the first time, establishing a trusted shared-secret via

the key-exchange. The produced quote is only valid for the specific machine the enclave

runs on and for the current end-user performing the key-exchange handshake.

As a result, IAS is a bottleneck for enabling services’ availability: IAS needs to be

contacted once per enclave per machine per remote end-user. Verifying the quote with IAS

is the only guarantee that an end-user has to ensure that they are communicating with a

genuine SGX enclave and not an SGX simulator. Consequently, if IAS is not available due
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to a service outage or heavy load, end users cannot establish trust with the enclave.

SovereignTEE Goal 1 is to enable high availability of services by decoupling the cloud

provider’s infrastructure availability from Intel’s infrastructure. SovereignTEE achieves this

goal by providing a trustworthy attestation process without depending on Intel’s individual

approval of service owners’ software for each new service, per machine, per end-user.

Additionally, as we explain in §4.3.3, SovereignTEE extends the attestation functionality to

not only verify the service owner’s identity but to also vouch that the service enclave has no

known vulnerabilities at the time of attestation.

Long Term Secure Storage. For secure persistent storage, enclaves encrypt files using

a deterministic encryption key generated with the SGX sealing API [29, 131]. The sealing

key depends on multiple components: a 32-byte KEY-ID, the enclave’s SIG-ID, a secret fused

into the CPU at manufacturing time, and (optionally) the enclave’s ENC-ID. The generated

sealing key can then be used by the enclave to encrypt file contents before they are saved to

persistent storage. As a result, the OS, which is untrusted, cannot decrypt file contents.

KEY-ID is not considered a secret and can be saved in plain text alongside the encrypted

file contents. KEY-ID’s purpose is to ensure that a fresh sealing key is derived every time, so

that encrypting the same file with different KEY-IDs will yield different cipher texts.

Adoption Challenge 2. Storage migration in Intel SGX cannot be managed automati-

cally by the cloud provider, because the sealing key depends on a secret fused to a physical

processor and cannot be regenerated on a different machine.

Typically, applications running in the cloud can migrate from one physical machine

to another to allow failure recovery via file system crash consistency. Moreover, cloud

management software may choose to migrate a secure application (and the corresponding

enclave) depending on resource usage or maintenance status.

Alas, in the current SGX ecosystem, once the migration is complete, the application will

not be able to access the files to which it previously had access, because the sealing key

cannot be regenerated on the new physical machine.
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A related challenge arises when several instances of an application, running on different

machines, try to access data that resides in shared storage, or when an application receives

input from another remote application. Such common scenarios cannot be supported without

extending the enclaves to coordinate storage keys.

Service operators might handle machine failures or enable flexible migration by having

enclaves proactively deliver the storage keys among themselves [17, 41, 105, 218, 225] or

managing key distribution on external dedicated hardware [203]. However, both approaches

prevent automatic resource management by the cloud provider. Proactive key delivery

requires knowledge of the target machines prior to a failure, which in turn mandates

pre-allocating machines to serve as backup. Unfortunately, most cloud providers do not

provide any control over physical resource provisioning [54] and static machine allocation

is inefficient [148, 227]. Therefore, machine pre-allocation will force the providers to

shift their resource management policy and will likely affect overall costs for customers.

Key management by service owners requires additional infrastructure on the owner’s part

and prevents the cloud provider from automatically restarting a service enclave on a new

machine, which may be required due to unanticipated failures or maintenance events.

SovereignTEE Goal 2 is to enable scalable secure storage while (a) enabling the cloud

provider to automatically manage its resources and migrate service enclaves for failure recov-

ery or maintenance purposes, (b) allowing services to share data over common storage, and

(c) preventing the service owner from having to dedicate additional in-house infrastructure

ahead of time.

4.3 SovereignTEE Design

SovereignTEE’s overarching goal is to increase services’ availability by eliminating

the dependency between the service software and the hardware on which it runs. This

goal is achieved by augmenting three crucial mechanisms of the SGX ecosystem: launch-

ing (§4.3.2), attestation (§4.3.3), and secure storage (§4.3.4). Fig. 4.4 compares the current
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enclave lifecycle in the SGX ecosystem to the lifecycle of an enclave in the SovereignTEE

ecosystem. Each mechanism in SovereignTEE derives its trust from the original SGX

mechanisms, thereby allowing the service owner and end-users to trust the replacement

mechanisms.

In addition to eliminating the dependency on the hardware, replacing these mecha-

nisms also allows SovereignTEE to augment them with new features to make SGX more

flexible and practical in a cloud environment. Specifically, the launch and attestation mecha-

nisms in SovereignTEE allow the cloud provider to launch and provide attestation proofs

only to software versions that it white-lists, and deny attestation for (possibly vulnerable)

deprecated versions (§4.3.3.3). The SovereignTEE Key-Factory allows applications to seam-

lessly migrate and share encrypted files across machines, without modifying the service

software (§4.3.4).
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We now explain the design of SovereignTEE and its mechanisms. Since SovereignTEE

is SGX-specific, we also detail the relevant implementation details.

4.3.1 SovereignTEE Threat Model

Despite the fact that the cloud provider has full control over their servers and software

stack, SovereignTEE provides the same security properties provided by SGX. Like previous

work [34, 40, 115, 180, 240], we consider the cloud provider to be a powerful adversary

that is capable of modifying the OS and the hypervisor and that has complete control over

network traffic.

Similar to prior work [34, 115, 240], denial of Service (DoS) attacks are out of scope, as

SGX only provides security and integrity guarantees. Cache timing, branch-shadowing, page-

table, and synchronization attacks [53, 100, 164, 217, 243, 279, 286] are also considered out

of scope. All SGX enclaves, including Intel’s Quote and Launch enclaves, are vulnerable

to these attacks [127, 130]. Using specific defense mechanisms [160, 180, 246, 250] is

orthogonal to SovereignTEE’s design.

Rollback protection of persistent storage can be achieved by using the monotonic

counters provided by the Intel SGX SDK Platform Software (PSW [131]). Relying on PSW

counters, however, inherently hinders migration of services between machines. We therefore

assume that rollback attacks on persistent storage are prevented using mechanisms which

are independent of a specific machine such as proposed in ROTE [180] and LCM [47].

Lastly, we assume that the classical SGX attestation process is sound and resilient to

speculative execution attacks [59, 155]. SovereignTEE components are implemented in

SGX enclaves, so remote users can trust them using default SGX attestation (§4.3.3.2).

Cloud providers should install OS and micro-code mitigations for SGX-specific attacks (e.g.,

Foreshadow [269, 282]), which the clients can verify via remote attestation [121].
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4.3.2 SovereignTEE Launch

SovereignTEE enables large-scale adoption of SGX by shifting the burden of vetting

enclave-writers from the hardware vendor to the cloud provider by using the SovereignTEE

Launch Enclave instead of Intel’s architectural Launch Enclave. During machine setup,

the cloud provider delivers their enclave signing key, SIG-IDcloud , approved by Intel, to a

SovereignTEE Launch Enclave. During launch time, the SovereignTEE Launch Enclave

uses SIG-IDcloud to re-sign the service enclave code, as illustrated in Fig. 4.5.

Validation of Service Owners’ Identity. SovereignTEE delegates responsibility for

validating the enclave-writer’s identity, SIG-IDservice, from Intel to the cloud provider. Intel’s

Launch Enclave permits execution in release-mode only to enclaves signed by a key matching

an approved SIG-ID. This policy makes it harder for malware writers to run malicious

software under SGX protection [243], as they must acquire or steal an approved key.

At a high level, the SovereignTEE Launch Enclave vets the service owner, instead of

Intel (step 1, Fig. 4.5), verifies the enclave code is approved to launch (step 2, Fig. 4.5),

and replaces the service owner’s signature on the enclave code with the cloud provider’s

signature (step 3, Fig. 4.5). Since the cloud provider’s signature is white-listed by Intel, the

provider can effectively obtain the launch token on behalf of the cloud service.

Replacing the enclaves’ signatures with SIG-IDcloud has side effects which affect remote

attestation and secure storage. We further discuss these side effects and how SovereignTEE

addresses them in §4.3.3 and §4.3.4.

Protecting the Cloud Provider’s Key, SIG-IDcloud . The integrity of the verification

process and the confidentiality of the cloud provider’s private key is protected by SGX’s

security properties. However, if the SovereignTEE Launch Enclave runs on the same

machine as the service enclaves, the cryptographic implementation must be resilient to

known side channel attacks mounted by malicious end-users (e.g., controlled channel and

branch shadowing [53, 164, 286]). Defense mechanisms have been investigated in prior

work [61, 246, 250] and are orthogonal to the SovereignTEE design. Alternatively, the cloud
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key, SIG-IDcloud .

provider can better protect his private key by running the SovereignTEE Launch Enclave on

a dedicated machine that is physically isolated from adversarial end-users, preventing side

channel attacks such as Foreshadow [121, 269].

SovereignTEE’s basic launch functionality (step 1 in Fig. 4.5) is similar to Intel’s Launch

Enclave: verifying that SIG-IDservice belongs to a known service owner. In addition, the

SovereignTEE Launch Enclave allows the cloud provider to also inspect the code of service

enclaves.

Enabling Service Code Inspection. Shifting the enclave validation process from Intel

to the cloud provider enables the provider to verify enclave contents, rather than just the

enclave-writer’s identity as the Intel Launch Enclave does. We conjecture that Intel chose to

validate only the enclave-writer’s identity because it would be costly (possibly infeasible)

for Intel to keep track of all possible enclaves for all different services that are executing on

all of Intel’s processors.

However, the cloud provider has the ability, and more importantly the incentive, to

know what software is running on its infrastructure. Similar to Apple’s App Store [32] and

Android’s Google Play Protect [90, 91], the cloud provider can inspect the service enclave’s

code prior to its deployment. After approving the service, the cloud provider can store the

service enclave’s ENC-IDservice in a repository of white-listed enclaves. The repository is

then used by the SovereignTEE Launch Enclave prior to re-signing service enclaves.
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During the launch process, the SovereignTEE Launch Enclave compares the ENC-

IDservice against a repository of approved enclaves (step 2 in Fig. 4.2). If a vulnerability is

discovered in a specific service version, the cloud provider can delete the service’s ENC-

IDservice from the repository of white-listed services and deny attestation to it, as we further

discuss in §4.3.3.3.

4.3.3 SovereignTEE Attestation

The SovereignTEE attestation mechanism decouples services’ availability from Intel’s

infrastructure by obviating the need to contact Intel to perform attestation, while maintaining

the security guarantees provided by the classical SGX attestation. Although conceptually

similar to the current SGX attestation process, SovereignTEE’s attestation replaces some

key components with alternatives that are controlled by the cloud provider. SovereignTEE

replaces the architectural Quote Enclave (QE) and the attestation key used by the QE, both of

which are currently controlled by Intel, with a SovereignTEE QE and SovereignTEE-specific

attestation key.

To ensure that the cloud provider cannot manipulate the attestation process (either

intentionally or inadvertently, due to an ongoing attack on the cloud provider), SovereignTEE

uses Intel’s classical attestation process exactly once. Specifically, the SGX attestation is

performed at machine setup time, to attest SovereignTEE’s replacement components.

In the next subsections, we explain how the cloud provider sets up a SovereignTEE Quote

Enclave and its attestation keys (§4.3.3.1) and how trustworthy attestation proofs (quotes)

are provided to end-users (§4.3.3.2). Finally, we discuss how SovereignTEE extends the

classical attestation functionality to prevent the attestation of deprecated services (§4.3.3.3).

4.3.3.1 Machine Setup

To maintain the classical SGX attestation’s security guarantees, the SovereignTEE Quote

Enclave (QE) generates a machine-specific private key and proves the authenticity of the
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key and the QE’s code (i.e., its ENC-IDQE) using the current Intel attestation process. To

prevent the cloud provider from forging attestation, SovereignTEE secures the generated

private key within the SovereignTEE Quote Enclave and never reveals it.

To allow external parties to verify that the SovereignTEE Quote Enclave (QE) does

not leak the attestation key, cloud providers are expected to release the QE’s source code.

External parties can review the code, and verify that the QE is not revealing the key.

We now explain how the SovereignTEE Quote Enclave generates the attestation key,

secures it, and how the key is bound to the specific enclave code represented by ENC-IDQE ,

and to the cloud provider’s identity.

Generating the Attestation Key. To provide attestation without requiring interaction

with the Intel Attestation Service (IAS), SovereignTEE uses a classical asymmetric signature

scheme (ECDSA [201]) instead of the EPID group signature scheme [51] that Intel uses.

The EPID scheme allows the machine running the attestation to generate a signature without

revealing its identity. However, this privacy property comes at the cost of requiring an

additional party—IAS.

In a typical cloud scenario, there is no need to anonymize the cloud provider’s machine.

The cloud provider is either indifferent about having their machines identifiable by their

public keys, or they can conceal any physical machine’s identity by generating as many

private-public key-pairs as needed.

Every SovereignTEE Quote Enclave generates local private and public attestation keys,

denoted AKpriv, AKpub, respectively. The SovereignTEE Quote Enclave uses AKpriv to sign

attestation quotes and end-users verify the quotes using AKpub (§4.3.3.2).

The private attestation key, AKpriv, is the source of trust in SovereignTEE’s attestation,

and therefore must be protected from the cloud provider and the service enclaves running on

the same machine as the SovereignTEE Quote Enclave. While in memory, the private key

AKpriv is secured within the SovereignTEE Quote Enclave thanks to SGX’s secure memory

properties. Any attack capable of extracting AKpriv is, in principal, also possible on Intel’s
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original Quote Enclave. When stored on persistent storage, AKpriv is protected using the

classical SGX sealing API [29, 131].

However, a straight-forward use of the sealing API will expose the private attestation key

to the service enclaves and the cloud provider. The default sealing key-derivation scheme,

as implemented by the SGX SDK, uses the enclave-writer’s identity (SIG-ID) to generate

the sealing key. In the SovereignTEE ecosystem, all service enclaves are re-signed with the

cloud provider’s public key (§4.3.2). Therefore, they can all share the same SIG-IDcloud and

can thus acquire the same sealing key as the SovereignTEE Quote Enclave. Moreover, using

this default sealing scheme also allows the cloud provider to write a second Quote Enclave,

signed with the same SIG-IDcloud , that can unseal and leak the attestation key.

To protect the attestation key from the cloud provider and other service enclaves, the

SovereignTEE Quote Enclave (QE) stores the attestation key using a sealing key derived

from its code’s digest, ENC-IDQE . Other enclaves, even if written by the cloud provider, will

have a different ENC-ID and will not be able to acquire the same sealing key. Protecting

the attestation key in this manner is similar to how SGX QE protects the attestation key,

generated by Intel. Therefore, attacks on SovereignTEE QE are conceptually also possible

on SGX QE.

For remote verifiers to trust the SovereignTEE attestation process, they must trust that the

private attestation key, AKpriv, is only accessible to a trustworthy Quote Enclave, controlled

by the cloud provider and protected by SGX security properties. We now explain how

SovereignTEE binds the public attestation key, AKpub, to a specific cloud provider and

proves that the key was generated within an enclave matching ENC-IDQE .

Binding AKpub to the Cloud Provider. To prove to service owners and end-users that

the SovereignTEE Quote Enclave runs on a machine owned by the cloud provider, the

provider certifies AKpub using the cloud provider’s public key, as illustrated in Fig. 4.6a.

Binding AKpub to the cloud provider is important to ensure storage migrations is only

possible within the cloud provider’s machines (§4.3.4). Moreover, VC3 [240] discuss the
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importance of allowing end-users to verify they are interacting with a machine owned by

the cloud provider in order to prevent cuckoo attacks [178]. In this attack scenario, the

attacker redirects the end-user to communicate with a machine controlled by him, allowing

the attacker to conduct physical attack to extract the SGX master secrets.

At setup time, the cloud provider has direct access to the machine and therefore trusts

the generated public attestation key (AKpub) belongs to a specific machine.

The cloud provider assures end-users and service owners that the attestation public key

(AKpub) belongs to the SovereignTEE Quote Enclave, running on a machine within the

cloud infrastructure, by certifying AKpub with the provider’s public key. We assume that the

cloud provider has a Certificate Authority (CA) key that allows it to generate a classical PKI

certificate [114, 158] over AKpub. The certificate is verified by end-users during operation

(§4.3.3.2), when they verify the attestation quote containing the key-exchange key-share.

Binding AKpub to ENC-IDQE . The SovereignTEE Quote Enclave uses classical SGX

attestation to prove that the public attestation key, AKpub, was generated and is protected by

an enclave with code matching ENC-IDQE . This process is illustrated in Fig. 4.6b. At machine

setup time, the SovereignTEE Quote Enclave performs a classical SGX attestation with a

modified quote. Instead of containing a key-share, used to establish a secure session (§4.2

and Fig. 4.3), the quote contains AKpub.

For end-users and service owners to verify the quote without contacting Intel themselves,

the cloud provider contacts Intel Attestation Service (IAS [139]) on their behalf, at machine

setup time. When queried with a quote, IAS provides a response signed by Intel’s public

key, serving as the attestation transcript. Therefore, the transcript can be verified offline

by any third party that trusts Intel’s public key. The attestation transcript proves that on a

given time and date, a SovereignTEE Quote Enclave with code matching ENC-IDQE , which

generated the attestation key AKpub, successfully performed the attestation process with

IAS. If the cloud provider wishes to prevent the public attestation key from being a unique

machine identifier, it can generate several attestation keys per machine.
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Figure 4.6: Attestation-Key Chain of Trust. (a) At setup time the cloud provider’s Certificate
Authority (CA) signs the public attestation key (2a), AKpub, proving that the SovereignTEE Quote
Enclave indeed runs on the provider’s infrastructure. (b) IAS verifies the quote and attests that an
enclave, running the code that matches ENC-IDQE has generate a public key AKpub. The generated
IAS transcript (2b) proves that AKpub was generated by a genuine SGX enclave. At rest, the
Attestation Key is protected on the file system via the SGX sealing API.

One-time SGX Attestation. In SovereignTEE, the classical SGX attestation is per-

formed only once per machine, instead of once per service enclave per machine per end-user.

When end-users attest service enclaves, SovereignTEE attestation (§4.3.3.2) is performed

instead of classical SGX attestation and there is no need to further interact with Intel.

SovereignTEE repeats the classical SGX attestation in case of a microcode or critical

SDK update. Intel may publish microcode or SGX SDK critical security updates [125, 135].

The cloud provider can decide to update the microcode or the SDK version, and then

re-execute the attestation process with IAS, receiving a new signed transcript with a fresh

time-stamp.

4.3.3.2 Operation time

During operation time, remote end-users connect to the service enclave and request

an attestation proof (quote) to verify the service is running on a trusted enclave. In the

SovereignTEE ecosystem, the service enclave uses the same reporting scheme as in classical

SGX attestation, however this time, with the SovereignTEE Quote Enclave. After verifying
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the service enclave, SovereignTEE’s Quote Enclave generates a SovereignTEE quote, signed

by the attestation key, AKpriv, generated at machine setup (§4.3.3.1).

Verifying the Service Enclave. The SovereignTEE Quote Enclave verifies the service

enclave code, ENC-IDservice, via the SGX reporting mechanism [131, 136], also known as

local attestation (§4.2). However, since SovereignTEE re-signs the enclave’s header with

SIG-IDcloud at launch time (§4.3.2), the report does not contain SIG-IDservice. That is, the

report is not enough to convince the SovereignTEE Quote Enclave that the service belongs

to a specific service owner, with a public key matching SIG-IDservice.

For the SovereignTEE Quote Enclave to verify the service enclave was signed by SIG-

IDservice, the service enclave also sends its original enclave header (Fig. 4.2), containing the

service owner’s signature on ENC-IDservice.

The SovereignTEE Quote Enclave then inspects the RSA signature [201] in the enclave

header and verifies that it was signed by SIG-IDservice. The SovereignTEE Quote enclave

generates the attestation proof (that is, the quote) with the correct SIG-IDservice. Finally, the

quote is signed with the SovereignTEE Quote Enclave private key, AKpriv, generated at setup

time (§4.3.3.1).

Verifying a SovereignTEE Quote. End-users can verify SovereignTEE’s attestation

proof without contacting Intel. In the attestation process, the SovereignTEE Quote Enclave

provides the service enclave with (a) the quote and (b) the cloud provider’s certificate on

the public attestation key, AKpub (2a in Fig 4.6a), and the Intel signed transcript (2b in

Fig. 4.6b), which bind AKpub to the the cloud provider and SovereignTEE Quote Enclave.

The SovereignTEE quote, the certificate on AKpub, and the IAS transcript are then sent

to the end-user for verification. The end-user verifies the attestation by (a) inspecting the

certificate chain in the quote, thus trusting that AKpub was generated on a machine owned

by the cloud provider; (b) inspecting the IAS transcript, thus trusting the attestation-key,

AKpub, was generated on a genuine SovereignTEE Quote Enclave secured by SGX; and (c)

inspecting the key-share, hence the end-user trusts it is establishing a secure channel with a
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genuine service enclave. For (a), we assume the end-user trusts the cloud provider’s CA key.

For (b), we assume that the end-user trusts Intel’s public key.

4.3.3.3 White-listed Enclave Versions

Using SovereignTEE to perform attestation does not allow IAS to revoke service owners’

identities on one hand, but allows extending the attestation functionality on the other.

Because SovereignTEE interacts with the IAS once at setup time, IAS cannot subsequently

decline attestation to specific service owners or specific enclaves.

To our knowledge, Intel does not maintain an enclave version tracking system to revoke

enclaves with known vulnerabilities. Maintaining such a repository for all enclaves on all

machines would entail significant cost.

However, declining attestation to enclaves with known vulnerabilities is crucial for

services’ and end-users’ security [226]. Over time, vulnerabilities are expected to be found

in existing enclaves.

SovereignTEE enables the cloud provider to manage the revocation of vulnerable enclave

versions. During attestation (§4.3.2), the SovereignTEE Quote Enclave verifies that the

attested enclave’s ENC-IDservice is approved to receive attestation quotes, prior to signing the

quote. When a vulnerability is discovered in a specific service enclave, the cloud provider

removes its ENC-IDservice from the repository of trusted services. When the service owner

releases a service enclave that fixes the vulnerability, it will have a new ENC-IDservice′ .

4.3.4 Storage-Key Management

SovereignTEE enables efficient failure recovery and allows services to share storage

and seamlessly migrate data between machines by generating a storage key, using a Key-

Factory enclave. SovereignTEE seamless migration can be used in conjunction with existing

SGX frameworks such as SCONE and Graphene [34, 264] which do not support machine

migration. At service setup time (§4.3.4.1), the Key-Factory enclave receives a storage seed
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from the service owner, which serves as the base entropy for storage keys. The service

owner’s storage seed is secured in memory and on the local file-system via SGX security

guarantees. During operation time (§4.3.4.2), the service requests a key from the Key-

Factory instead of using the SGX sealing API. Instances of Key-Factories securely share

storage seeds to allow seamless migration of encrypted files between machines.

4.3.4.1 Setup Time

To ensure the storage keys are only known to the service owner, the owner securely

delivers a randomly generated storage-seed to the Key-Factory enclave. The storage-seed

is used during operation time (§4.3.4.2) to generate storage keys via a Key Derivation

Function [62].

The service owner uses the SovereignTEE attestation process (§4.3.3) to (1) verify the

Key-Factory enclave’s integrity, (2) ensure that the Key-Factory enclave is running on the

cloud provider’s infrastructure, and (3) to establish a secure communication channel with the

Key-Factory. The service owner then uses the secure channel to deliver their storage-seed.

To allow future key requests from service enclaves belonging to the service owner, the

Key-Factory registers the storage seed as belonging to the service owner’s identity, namely

SIG-IDservice.

The Key-Factory protects the storage-seed via the SGX sealing API. Similar to the

sealing policy used by the SovereignTEE Quote Enclave to protect the private attestation

key (§4.3.3), the Key-Factory (KF) derives its sealing key from its ENC-IDKF .

To provide service enclaves with storage keys on new machines, which are yet to receive

the storage seed, every Key-Factory is configured with the address of a remote, backup

Key-Factory. For simplicity, in the following discussion, we assume that all machines in the

cloud infrastructure have a single backup remote Key-Factory, as depicted in Fig. 4.7. All

Key-Factories use the backup Key-Factory to back up and retrieve storage-seeds.
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Figure 4.7: SovereignTEE Key Factory. (1) The enclave sends its original header containing its
signature by SIG-IDservice, and a KEY-ID. (2) If needed a secure channel is established with a remote
backup Key-Factory to retrieve the storage-seed. (3) Finally, the local Key-Factory derives and
returns the key.

4.3.4.2 Operation Time

To allow easy integration of SovereignTEE into existing services, SovereignTEE re-

places all file operation APIs (e.g., fopen, fread, fseek, etc.) with wrapper code to use the

SovereignTEE secure storage mechanism. SovereignTEE automatically performs the key

management operations, described below, on behalf of the service enclave.

To provide similar security properties as SGX sealing, SovereignTEE storage keys are

derived from the enclave-writer’s identity (SIG-ID), arbitrary 32 bytes of nonce called KEY-

ID, and optionally the enclave’s code digest (ENC-ID). While SGX sealing keys are derived

from a machine-specific secret, fused to the processor at manufacturing time, SovereignTEE

storage keys are derived from the storage-seed provided by the service owner.

Service enclaves securely retrieve the storage key over a secure channel with the Key-

Factory, established via local attestation (§4.2). Similar to the SovereignTEE attesta-

tion process (§4.3.3.2), the service enclave proves its SIG-IDservice by sending its enclave

header (Fig. 4.2) with the signature signed by SIG-IDservice (step 1, Fig. 4.7).

The SovereignTEE secure storage mechanism allows enclaves to seamlessly reuse files

created on other machines. When a service enclave requests a storage key, the Key-Factory

will search its repository for a storage-seed matching the SIG-IDservice of the requesting

enclave. The absence of a match means that the service enclave has migrated to this machine

and that the storage-seed needs to be retrieved. The local Key-Factory will contact the remote
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backup Key-Factory enclave to securely retrieve the storage-seed by using SovereignTEE

remote attestation, as depicted in Fig. 4.7.

SovereignTEE remote attestation enables the backup Key-Factory to verify the storage

seed is delivered to a trustworthy Key-Factory. That is, a Key-Factory (KF) with the same

ENC-IDKF and that runs on a machine within the cloud provider’s infrastructure.

4.4 Evaluation

In this section, we evaluate SovereignTEE’s ability to provide high availability and failure

recovery by answering the following questions: (1) Can SovereignTEE enable machines to

share data via common secure storage and enable them to be securely migrated/restarted

upon failure to improve availability (§4.4.1)? (2) What is the performance impact of using

SovereignTEE’s secure storage capability compared to the current SGX storage mechanism

(§4.4.2)? (3) What is the integration effort required for existing applications to leverage

SovereignTEE (§4.4.3)?

We evaluate SovereignTEE on popular applications with realistic use cases in a cloud

computing scenario. We focus on applications that are used to manage private informa-

tion belonging to service owners and end-users. Specifically, we evaluate SovereignTEE

on two databases: SQLite [255] and Redis [232]; two web servers: NGINX [200] and

Lighttpd [167]; and a secure communication application: OpenVPN [213]. SQLite is an

embedded database used in Firefox, iOS, Chrome, and Android; Redis is an in-memory key

value store which backs up its database to disk and is used by Twitter, GitHub, Craigslist,

StackOverflow and more; the NGINX web server serves around 24% of the web [197]; Open-

VPN provides confidential and authenticated secure channels between remote machines,

and is supported by Amazon’s AWS [24] and Microsoft Azure [186].

Lastly, to compare file access performance of SovereignTEE secure storage vs. using

SGX sealing keys we evaluate SovereignTEE on the Flexible File System Benchmark

(FFSB [78]).

91



Experimental Setup: To test file accesses from multiple machines, we conduct the

experiments using two machines. The first machine is a 2.8GHz Intel Core i7-7700HQ with

8 logical cores and 32 GB DDR4 RAM. The second machine is an Intel Core i7-7567U CPU

@ 3.50GHz with 4 logical cores and 32 GB DDR4 RAM. Both machines run Ubuntu 16.04.

The machines communicate over a 1 Gb/sec link (948 Mbits/sec, effectively, as measured

using iperf3 [144]). Average link latency is 0.69 ms, as measured using ping.

The SovereignTEE implementation consists of 12923 C/C++ lines of code (LOC), of

which 8256 LOC belong to the launch utilities (§4.3.2); 3103 LOC to attestation utilities

(§4.3.3); 1564 LOC to secure storage (§4.3.4).

4.4.1 SovereignTEE’s Effectiveness

In this section, we evaluate the effectiveness of SovereignTEE by demonstrating how

we integrate it with five different applications. We first explain how applications use

SovereignTEE during their life-cycle: launch, attestation, and secure storage access. We

then show that SovereignTEE allows services to seamlessly migrate and be restarted on

a different machine, using the same configuration and database files. We also show that

services can share common storage without interacting with each other to agree on a storage

key.

Launching Enclaves: Launching enclaves with SovereignTEE does not require any

binary linking (unlike attestation and secure storage). We use the SovereignTEE Launch

Enclave to re-sign the five tested applications (Fig. 4.5). To verify the correctness of the

re-signing process, we perform the classical SGX attestation with the re-signed applications.

We then inspect both the attestation quote and the respective IAS transcript (2b in Fig. 4.6b)

and verify that it contains SIG-IDcloud instead of the original SIG-IDservice.

We now explain the modifications that existing applications require to leverage Sovereign-

TEE.

SovereignTEE Attestation: We verified that the IAS transcript, generated for

92



SovereignTEE Quote Enclave (QE) at setup time (Fig. 4.6b), attests that the QE runs

on a genuine SGX enclave, and that the QE’s public key, AKpub, that appears in the IAS

transcript, is used to sign the attestation quotes (§4.3.3.2).

Secure Storage: For secure persistent storage, enclaves can use the SDK protected file

system API. This API can be configured to either use SGX sealing keys or manual keys,

provided by the enclave code. SovereignTEE uses the SDK protected file system API in

manual mode and supplies the key retrieved from the Key Factory (§4.3.4). Any further

operations using the SDK protected file system API are then seamlessly supported.

4.4.1.1 Failure Recovery: Enabling Database Migration

To evaluate SovereignTEE’s usefulness for migrating data between machines, we test

Redis [232], and SQLite [255]. For both applications, we run a specific performance

evaluation benchmark (detailed below) on one machine, where each benchmark generates a

database. We then run the benchmark again on the existing database on another machine

and ensure that the records in the database can be read from and written to.

SQLite: We evaluate SQLite using lsmtest benchmark [254]. The lsmtest benchmark

adds new key-value pairs to the database and then reads them back. We use the default key

size of 12 bytes and value size of 100 bytes, with 1:1 read-write ratio. SQLite accesses a

total of three files: the database file and two temporary files, which are deleted upon process

exit. At the end of the benchmark, the database contains 2.5 million records. We then move

the database file to another machine and re-run the benchmark with the existing database.

We run the benchmark in read-write mode to ensure both reading and writing is possible on

the new machine.

Redis: Redis is in-memory key-value store [232], which backs up its database to the

file system. Restarting Redis after a crash or a shutdown reloads the database from the file

system. We test Redis with Redis’s memtier benchmark [231].We run the benchmark with

1:1 read-write ratio until it generates a database with 1.5 million keys. We then copy the

93



0 50 100 150 200 250 300 350
Mean time to failure (days)99

.9
99

90
0%99

.9
99

99
0%99

.9
99

99
9%

Av
ai

la
bi

lit
y

Baseline
SovereignTEE

Figure 4.8: Availability of Redis server. Without SovereignTEE, the machine owning the data must
be restarted upon failure. In contrast, using SovereignTEE, the database can be transferred and
reloaded on a different machine, without waiting for the original server to recover, which improves
availability by an order of magnitude on average.
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Figure 4.9: FFSB Performance Results. Normalized performance of using SGX sealing key managed
via the SDK vs. a storage key managed by SovereignTEE. All performance values are normalized
to the native SDK performance; Numbers are actual values. a) Transactions Per Second (TPS) of
different microbenchmarks in FFSB [78]. s is short for fsync. b) Bandwidth in MB/Sec. c) Average
latency of basic operations.

encrypted database file to the new machine and restart Redis. Redis successfully loads the

database back into memory and it is fully functional; i.e., stored values can be fetched and

existing keys can be updated with new data.

Figure 4.8 shows how seamless data migration can improve the availability of a Redis

server. We used memtier to generate a 3.5 GB data-set (in memory), which is compressed

to 96 MB on disk. We compute availability as the ratio of time-to-recover and mean-

time-to-failure. Time to recover includes either rebooting the machine (baseline, 60 s2) or

2The experiments with two server-class Intel Xeons reveled that a reboot always takes longer than 60
seconds. We pick 60 seconds as the baseline to err on the side of caution.
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transferring the database using SovereignTEE (0.1 s over a 10 Gb link), and then reloading

Redis (7.9 s). SovereignTEE improves the availability of Redis by an order of magnitude.

4.4.1.2 Enabling Data Sharing Between Machines

We now evaluate the ability of SovereignTEE to enable scaling of services by supporting

access to encrypted files across two separate machines. Without SovereignTEE, each

individual program would need to implement a mechanism for sharing their storage key. We

evaluate file sharing with Lighttpd [167], NGINX [200], and OpenVPN [213].

Typical web server deployments have many instances on separate machines concurrently

serving web pages from common storage. The tests serve pages from a single common

storage simultaneously accessed by web servers on two machines. We verify Lighttpd

and Nginx are serving web-pages correctly using http load [7]. The benchmark fetched

concurrently 1000 different pages with varying sizes between 10 KB to 10 MB. The web

servers operated correctly, fetching pages from the common encrypted storage.

For OpenVPN, multiple service instances may need to communicate with each other in

a public cloud infrastructure. Whereas the software instances run on separate machines, it is

desirable for them to retrieve a common encrypted configuration and encryption keys. To

evaluate OpenVPN with SovereignTEE, we create a tunnel between two machines using

configuration and encryption keys on common storage. We then test the encrypted tunnel

link using iperf3 [144]. Both machines were able to send and receive data over the encrypted

tunnel.

4.4.2 SovereignTEE’s Efficiency

In this section, we evaluate the performance impact of managing storage keys with

SovereignTEE and show that it has no adverse effects, compared to the baseline of using

SGX sealing keys.

If the key is managed automatically, the SGX SDK derives it from the machine-specific
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SGX sealing key [29, 131], which means the file cannot be used on any other machine. If

the key is managed manually by the software, the SGX software has to receive the key from

an external party any time the service is restarted on a different machine.

We evaluate the performance of different types of file accesses using the Flexible File

System Benchmark [78]. The benchmark evaluates the latency of basic operations such as

open, close, read, write, and measures the throughput of reading and writing to new and

existing files using various POSIX API functions.

In all the experiments, we compare the performance of accessing files with an SDK-

managed sealing key vs. file accesses using SovereignTEE to manage the storage keys.

As shown in Fig. 4.9, managing storage keys with SovereignTEE is at least as efficient

as using sealing keys that are automatically generated by the SDK. Fig. 4.9a shows that

SovereignTEE enables similar or higher rate of Transactions Per Second (by 2-7%) for

various file operations. Fig. 4.9b shows that the data bandwidth associated with the various

file operations is either comparable or higher (by 3.5–6.5%) when using SovereignTEE.

Finally, Fig. 4.9c demonstrates that the latency associated with basic file operations is the

same or lower (down to 4.5% less) when using SovereignTEE.

The automatic key management performed by the SGX SDK is slightly slower because

the SDK needs to call EGETKEY to retrieve the sealing key. In contrast, a SovereignTEE

storage key is retrieved only once, when the service enclave is loaded.

Memory overhead of SovereignTEE: SovereignTEE attestation and secure storage

requires linking with additional functionality provided by SovereignTEE. SovereignTEE

static library adds 792 KB of code to the enclave. The SGX SDK static libraries add 683

KB, for a total overhead of 1475 KB in the resulting service-enclave object size.

4.4.3 Integration Effort

SovereignTEE is intended to work with SGX applications. However, the applications

we test were not originally designed to use SGX. We therefore port each application to run
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Application
Original 
LOC

Modified 
LOC

Wrapper 
LOC**

S-TEE Wrapper
LOC

Redis 54,036 28 3,884 64

SQLite 127,444 3 3,523 64

Lighttpd 38,624 2 3,321 64

NginX 128,052 35 4,184 64

OpenVPN* 60,815 3 2,617 64

FFSB 5,316 3 4,515 64

*   OpenVPN LOC does not include OpenSSL
** Wrapper code is automatically generated

Figure 4.10: Effort of porting applications to run in SGX Enclaves, in Lines of Code (LOC). SGX
enclaves can not access the OS API directly and therefore wrapper code is added to perform out-
calls (ocalls) to regular code. The automatically generated wrapper code is then modified to use
SovereignTEE secure storage operations requireing 64 LOC changes in each case.

inside an SGX enclave. The SGX porting process requires linking applications with the

SGX SDK replacements for standard libraries. Any POSIX APIs that require interaction

with the OS (e.g., for network accesses) are replaced with wrapper code to interact with non-

enclave code via ocalls (§4.2). We generate most of the wrapper code using an automatic

tool we built.

Fig. 4.10 depicts the porting effort in lines of code (LOC). Applications require modifi-

cations to run properly within SGX enclaves. Porting an application to run inside an SGX

enclave is orthogonal to the effort required to integrate the application with SovereignTEE

and requires on average 2,600–4,300 LOC. Integrating an SGX-ready application with

SovereignTEE, however, requires a relatively small effort (64 LOC) and is fully automated.

4.5 Related Work

Recent work proposes useful frameworks for porting existing applications to run under

SGX protection [34, 40, 264] and preventing data leakage [115]. However, these works

do not address the key practical deployment challenges of Intel SGX such as continuous

97



dependence on the hardware vendor and inflexible deployment mechanisms. Moreover,

these works also do not provide failure recovery features when their enclave hosting machine

has crashed.

LibSEAL, Pesos, EnclaveDB, and Attestation Transparency (AT) [39, 41, 157, 225]

suggest SGX-based mechanisms to augment trust in various cloud storage services and

improve the security of trusted communication with them.

The SovereignTEE Quote-Enclave functionality of monitoring enclave versions

(§4.3.3.3) can benefit from the elaborate database proposed by AT. Pesos and En-

claveDB [157, 225] are mechanisms for providing trusted storage. Pesos delegates secure

storage to external secure hardware, with which it communicates over a secure TLS connec-

tion. SovereignTEE does not assume any security guarantees are provided by the storage

hardware. EnclaveDB does not rely on secure external storage, however, it cannot recover

the contents it manages if the machine it runs on crashes. While AT implements manual key

management, its protocol requires interactions between two functional AT machines and

cannot recover the key if a machine crashes.

The enclaves implementing SovereignTEE should be cognizant of existing attacks

on SGX enclaves, such as controlled channels, cache side channels, branch shadowing,

etc. [53, 280, 100, 162, 164, 286]. Future implementations of SovereignTEE can benefit

from employing known defense mechanisms, such as SGX-Shield, T-SGX, SGXBOUNDS,

etc. [61, 160, 246, 250].

4.6 Conclusion

Trusted Execution Environments (TEEs) promise to revolutionize cloud security. How-

ever, the only widely available TEE for servers, Intel SGX, presents challenges for supporting

high availability and failure recovery for deployed services. In this chapter, I analyze these

challenges and introduce SovereignTEE—a new model for managing secure enclaves in a

cloud infrastructure. SovereignTEE enables cloud providers to be independent of Intel’s
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infrastructure availability and securely manage the attestation process. SovereignTEE en-

ables scaling of services by allowing cloud seamless migration data between machines in

the data center. Finally, I demonstrate that SovereignTEE’s effectiveness and efficiency on

five real-world programs, showing it improves throughput by 2–7% and increases services

availability by an order of magnitude.
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CHAPTER V

Foreshadow: Breaking SGX using Speculative Execution

5.1 Introduction

In previous chapters I analyzed SGX impact of applications’ performance and proposed

frameworks to enable practical deployment of distributed trusted services. In this chapter, I

analyze the SGX’s resilience to micro-architectural attacks. Specifically, I present a micro-

architectural side channel attack that breaks SGX’s confidentiality, integrity and trust. A

different variant of the vulnerability was independently and concurrently discovered by a

team at KU Leuven. Intel’s subsequent investigation of the attack uncovered two closely

related variants, which Intel refers to as L1 Terminal Fault (L1TF [282]).

Notwithstanding its strong security guarantees, SGX does not protect against micro-

architectural side channel attacks. Such side channel attacks exploit subtle timing varia-

tions resulting from contention on CPU micro-architectural resources to extract otherwise-

unavailable secret information. Since their introduction over a decade ago [221, 42, 217,

265], micro-architectural attacks have been used to break numerous cryptographic im-

plementations [293, 87, 145], track user behaviors [215, 171, 104], and create covert

channels [103, 277]. Moreover, recent works combine micro-architectural attacks with

speculative execution [155, 124, 172], allowing the attacker to read the entire address space

of victim processes or of the operating system.

In terms of protection against side channel attacks, Intel acknowledges that “SGX
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does not defend against this adversary” [129, Page 115] arguing that “preventing side

channel attacks is a matter for the enclave developer” [127]. Indeed, starting with the

controlled channel attack [286], numerous works have demonstrated side channel attacks on

or from SGX enclaves (See Section 5.1.4). Crucially, all the previously published attacks on

SGX exploit existing side channel vulnerabilities [286], coding bugs [160], or speculative

execution gadgets [208, 60] in enclaves’ code to leak sensitive data.

Much less is known, however, about the side channel security of SGX enclaves that do

not contain existing side channel vulnerabilities or other coding bugs. Thus, in this chapter,

I ask:

Can an adversary extract secret data from an enclave’s address space when the code running

in that enclave does not itself have any security vulnerabilities? If so, can this be done

cheaply and unobtrusively?

Next, I observe that whereas SGX’s confidentiality guarantees in the presence of side

channels have been studied before [286, 271, 163, 279], SGX’s integrity guarantees in the

presence side channels have received much less research attention. Thus, I ask:

What are the implications of side channel attacks on the SGX integrity guarantees? Can an

adversary make an enclave operate on corrupted input data or corrupted state?

Finally, given the importance of SGX remote attestation [149] in establishing trust in the

SGX ecosystem, I finally ask:

Can a side channel adversary erode the trust in SGX remote attestation? If so, what will it

take to mount such an attack?

5.1.1 My Contribution

I answer all three questions in the affirmative. I answer the first question by presenting

several new attacks that compromise SGX’s confidentiality guarantees. I then use the attacks

on SGX’s confidentiality properties to break SGX’s integrity guarantees, thereby answering

the second question. Finally, I use these attacks to recover the machine’s private attestation
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keys, thereby breaking SGX’s attestation protocol and answering the third question. As such,

without mitigation1, the attacks described in this chapter fully compromise the basis of trust

in the SGX ecosystem, both in terms of confidentiality and integrity.

Breaking SGX’s Confidentiality The first attack exploits the speculative execution fea-

tures present in all SGX-enabled Intel CPUs to read the entire address space of vic-

tim enclaves. Crucially, unlike previous Spectre-style speculative execution attacks on

SGX [59, 208], the attack does not require any code gadget or any other form of cooperation

from the victim enclave. In fact, the attack reads all the secrets of the victim enclave

without requiring that enclave to execute any instruction. In particular, the attack bypasses

all currently proposed side-channel mitigations for SGX [246, 250, 61, 209], as well as

proposed countermeasures for speculative execution attacks [124, 134].

At a high level, an attacker can maliciously retrieve memory contents of the victim en-

clave by remapping the victim memory into the address space of the attacker enclave, which

allows bypassing SGX’s default enclave-isolation mechanism of abort page semantics. The

attacker then prefetches the victim’s data into the L1 cache without the victim’s involvement

by leveraging the cache behavior of SGX paging instructions, thus dramatically improv-

ing the attack effectiveness. Finally, the attacker uses speculative execution to perform

segmentation-fault-free access to the victim’s memory. The interested reader is referred to

Section 5.4 for additional details.

Breaking the Integrity of Sealed Data Going beyond attacks on the SGX confidentiality

properties, I show the first attack that compromises SGX’s long-term storage integrity

guarantees. More specifically, in addition to secure computation, SGX also aims to provide

private and authenticated long-term storage, which is implemented via a special sealing

Application Programming Interface (API) [29]. This storage mechanism allows enclaves to

encrypt and verify data stored by the (untrusted) operating system.

1Intel released a micro-code patch mitigating the attack described in this chapter on Aug. 14th 2018.
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As I show in Section 5.5, I can use the attack on SGX’s confidentiality to extract the

sealing key from a victim enclave that uses the SGX sealing mechanism. We note that

extracting this key from the address space of an enclave is challenging as the SGX Software

Development Kit (SDK) implementation of the sealing API [133] zeros out the sealing key

from memory immediately after using it, thereby requiring the attack to intercept the key

before it is destroyed. After recovering the sealing key, I use it to unseal and read the sealed

information, then modify and reseal it. As SGX provides no means to detect such a change,

the victim might now operate on data corrupted by the attacker.

Breaking Remote Attestation Finally, I turn the attention to SGX’s remote attestation

mechanism, which allows an enclave to prove to a remote party that it has been initialized

correctly and is executing on a genuine (presumably secure) Intel processor.

As we show in Section 5.6, we can mount the aforementioned attacks on the SGX

Quoting Enclave, dump its entire address space, and retrieve its sealing key. Besides being

the first documented attack on a production enclave, this attack is particularity devastating

as we use the sealing key to unseal the persistent storage of the Quoting Enclave, which

contains the machine’s private attestation key. With this key in hand, we can construct

malicious SGX simulators that pass the entire attestation process, masquerading as enclaves

that are allegedly running on genuine Intel processors with the SGX security guarantees.

As the simulated enclaves do not offer any security guarantees, this attack undermines the

trustworthiness of SGX’s attestation mechanism.

Exploiting SGX’s Privacy Guarantees The SGX attestation protocol is designed with

privacy in mind, and does not reveal the identity of the attesting machine to the remote

verifying party. As such, the remote party has no way of telling which keys were used for

the attestation. Consequently, until revoked by Intel, even a single leaked attestation key can

be used for all malicious simulators, without the remote parties being able to distinguish

them from genuine SGX machines. Thus the leak of even a single key jeopardizes the
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trustworthiness of the entire SGX ecosystem.

Brittleness of the SGX Ecosystem To the best of our knowledge, this attack is the first

direct attack on the confidentiality of the SGX enclaves that makes no assumptions about

code running in a victim enclave. By leveraging this attack, the adversary may break the

integrity of the SGX long-term storage and the trustworthiness of the remote attestation

protocol. As such, this chapter highlights the brittleness of the current SGX design, because

a flaw in confidentiality leads to a cascading set of compromises that undermine the root of

trust in the ecosystem.

5.1.2 Targeted Hardware

Experimental Setup The attacks described in this chapter are applicable to any presently

shipping SGX-enabled Intel CPU. The experiments were conducted experiments on a

NUC7i7BNH machine equipped with an Intel Kaby Lake Core i7-7567U processor featuring

2 physical cores and 64 KB of 8-way set associative L1 data cache. The machine was

running a fully updated Ubuntu server 16.04, which includes microcode and operating

system countermeasures against previous speculative execution attacks (e.g., Spectre and

Meltdown). The attack was verified to successfully read enclave contents on machines

featuring Core i7-6770HQ, i7-6700K, i7-6700, i7-6500U.

More information regarding the L1TF vulnerability is available in [269, 282, 120, 266,

95, 187].

5.1.3 Threat Model

The Attacker Controls the Operating System. We assume that the attacker controls the

operating system and, in particular, can install kernel modules or otherwise execute code

with supervisor (ring-0) privileges. The attacker is therefore capable of controlling the

virtual-to-physical memory mapping of processes and execute SGX instructions. We note
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that while we assume a very strong adversary, such a malicious attacker is well within the

SGX threat model. Specifically, an SGX enclave is designed to be “protected even when the

BIOS, VMM, OS, and drivers are compromised” [123].

No Physical Access While the attacker requires supervisor privileges, the attacks pre-

sented in this chapter can be conducted remotely. We do not assume any physical access to

the attacked machine, including its memory, memory bus, motherboard, etc.

The Attacker Can Observe When a Secret is in Memory We assume the attacker is

capable of launching the victim enclave, and estimating when the enclave contains secrets. In

a simple scenario, the observation is made by the attacker invoking specific enclave functions

that generate a secret locally or request a secret from an external party. In section 5.5, we

explain how an attacker can pause an enclave to retrieve a secret in memory before it is

erased.

We stress that the interaction with the victim enclave is made for observing when the

secret is in memory. No interaction with the victim enclave is required for extracting the

secret. At any time, the attack allows the entire victim memory space to be extracted.

No Assumptions on the Victim’s Code The attack makes no assumptions on the victim’s

code or on its layout in memory. Unlike Spectre [155, 124], the attack does not require

any special code gadgets [208]. Even if the code is encrypted or Address Space Layout

Randomization (ASLR) is used [246], the attack is capable of reading the contents of the

enclave after it is decrypted and after ASLR code placement randomization is completed.

5.1.4 Related Work

Exploiting Operating System Control. Excluding the OS from the TCB gives potential

attackers powers that do not exist in more traditional attack models. The controlled channel

attack [286] uses the OS’s control over the enclave’s memory mapping to leak information
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about the enclave’s operation. Under this attack, the OS protects the enclave pages by

manipulating virtual memory permissions, preventing access. When the enclave attempts

to access a protected page, the processor traps to the OS, which records the access before

enabling permission and allowing the enclave to continue. The attack can recover high-

resolution data, including outlines of JPEG images [286] and cryptographic keys [251, 280].

In addition to page faults, the operating system can also monitor other effects of page

table access, including whether a page is dirty or has been accessed, and the caching status

of the page table or the translation lookaside buffer [276, 271]. This approach reduces the

overhead and side effects of the controlled channel attack.

micro-architectural Attacks. micro-architectural side channel attacks are considered

outside the scope for SGX [129, 127], hence it is not surprising that SGX is vulnerable to

such attacks. However, operating system control gives attackers additional powers when

deploying micro-architectural attacks.

One such power is the ability to interrupt the victim enclave frequently, allowing the

attacker to monitor the cache [194, 193] or the branch predictor unit [163, 77] after almost

every victim instruction. Attackers can also use the operating system control to reduce

system activity and the noise it induces on micro-architectural attacks. For example, the

operating system can block interrupts and ensure that the attacker thread and the enclave

execute on the two hyperthreads of the same core [49]. Furthermore, the operating system

has access to performance information that is not normally available to, or is very noisy

when used from user processes [163, 49, 99].

Speculative Execution Attacks on Enclaves. Both [208] and [60] demonstrate that the

Spectre attack [155] works on SGX enclaves. Both attacks are demonstrated only against

specially crafted enclaves, and as such are more at the proof-of-concept stage rather than

being practical attacks.

Both attacks rely on executing vulnerable code within the victim enclave. The attack
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described here, in contrast, does not require any specific code in the victim enclave and can

extract all of the memory contents of the enclave without executing any of the enclave code.

While existing work shows vulnerable gadgets exist in the SGX SDK [208], these attacks

can be mitigated by patching the SDK and removing these gadgets. The attack does not rely

on vulnerabilities in SDK.

Denial of Service Attacks. The use of encrypted and authenticated memory protects

enclaves from subversion via attacks, such as Rowhammer [151], that modify the contents

of memory. However, the pitfall of this protection is that Rowhammer attacks can now be

used to mount a denial-of-service attack on the entire machine, as the unauthorized memory

changes lock the processor, requiring a power cycle for execution to resume [147, 102].

Other Attacks on Enclaves. SGX offers only limited protection to vulnerabilities in the

code running within enclaves, which can compromise enclave security. One example is

Edger8r [143], a timing leakage in the Intel SGX SDK that allows attackers to retrieve

some contents of the attacked enclave. [161] show that memory corruption vulnerabilities

in SGX enclaves can be exploited and explain how to mount Return Oriented Program-

ming [247] attacks on such vulnerabilities. Finally, AyncShock [279] shows how to exploit

synchronization bugs to hijack the enclave control flow.

Attacks from Enclaves. Because the contents of enclaves cannot be observed by the

operating system, malicious code may run undetectably in enclaves. SGX provides some

protections against malicious enclaves. In particular, enclaves execute in user space, and

thus cannot invoke privileged instructions. Furthermore, several non-privileged instructions

are disabled in enclaves, for example, IN or OUT, which perform input/output operations

and SMSW, which may leak kernel information. However, this protection does not extend

to micro-architectural attacks. Consequently, enclaves can leak information through cache

attacks [243] and modify the contents of memory using the Rowhammer attack [102].
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Defenses. Several mitigation techniques for SGX attacks have been proposed. T-

SGX [250] uses a Transactional Synchronization Extensions transaction to catch interrupts,

so the enclave can identify the page faults used in the controlled channel attack [286]

and the timer interrupts used in other attacks [194, 163, 77]. [251] defend against the

controlled channel attack by forcing a deterministic access pattern to enclave pages. Hy-

perRace [61] aims to protect against attacks that rely on hyperthreading, such as [49].

HyperRace uses a data race to implement a co-location test with which an enclave thread

verifies that it is co-located on the same core as a dedicated shadow thread, thereby ensuring

that no attacker concurrently executes on the same core. Similar techniques are used in

Varys[209]. SGX-Shield [246] randomizes enclaves’ address space layout to protect against

memory-based attacks, including the controlled channel attack. DR.SGX [48] protects from

some cache-based attacks using fine-grained randomization of enclaves’ data locations.

SGXBounds [160] provides memory safety for SGX enclaves by tagging pointers with

bounds information.

5.2 Background

5.2.1 The Flush+Reload Attack

Flush+Reload [292, 109] is a cache-based micro-architectural attack technique that

detects access to a shared memory location. The technique consists of two main operations.

The flush operation evicts the contents of a monitored memory location from the cache.

Typically, this is done using a dedicated instruction, such as the clflush instruction

on x86 architecture. The reload operation then measures the time it takes to access the

monitored location. Based on this time, it determines whether the contents of the monitored

location was cached prior to its execution.

In a typical attack scenario, an attacker flushes one or more monitored locations. It then

either executes an operation it wants to analyze or waits until it is naturally executed by
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the victim. The attacker then reloads the monitored locations, while recording the amount

of time required to perform the reload. As the analyzed operation accesses (and thereby

caches) some of the monitored locations but not others, the attacker is then able to learn

information about the memory access pattern of the analyzed operation. Finally, as memory

access patterns often reveal information about the inputs of the analyzed operation, the

attacker is often capable of completely recovering these inputs. Flush+Reload has been

extensively used for side channel attacks [18, 84, 292, 146, 85, 222, 104, 172, 155, 296].

5.2.2 Speculative Execution

To improve performance and utilization, modern processors execute multiple instructions

concurrently. In a nutshell, the processor tries to predict the future instruction stream. By

executing multiple instructions from the predicted stream in parallel, the processor is able, for

example, to use the time it waits for data to arrive from memory to execute future instructions.

For linear code, i.e. code that does not branch, prediction of the future instruction stream is

straightforward. For non-linear code, processors employ multiple strategies for predicting

the outcome of branches.

Execution of future instructions is inherently speculative. The actual instruction stream

may differ from the predicted one. Two scenarios that may result in prediction errors are

branch misprediction, where the branch predictor incorrectly guesses the outcome of a

branch, and the occurrence of traps that interrupt the instruction stream. To maintain correct

program behavior, the processor does not commit the results of speculatively executed

instructions. Instead, completed instructions are kept in a reorder buffer until all preceding

instructions have successfully completed. When the processor discovers it erroneously

speculated an instruction stream, these instructions are abandoned and the results of their

execution do not affect the state of the program.
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5.2.3 Spectre and Meltdown

When the CPU abandons speculatively executed instructions, it does not fully revert

the side-effects these instructions have on its micro-architectural state. Spectre and Melt-

down [155, 172] exploit these side-effects to leak information across protection domains.

The attacks cause the CPU to speculatively execute a gadget that implements the transmitting

side of a covert channel, sending information that would otherwise be unavailable to the

receiver.

More specifically, the Meltdown attack exploits a race condition in vulnerable processors

that allows user processes to read kernel data. Specifically, when a user program attempts

to read from a kernel address, the processor validates the access while at the same time it

speculatively executes the instructions that follow the kernel memory read. By placing a

gadget that sends the contents of the kernel memory address through a covert channel, an

attacker can retrieve the contents of that address.

Similarly, the Spectre attack leaks memory using a speculatively executed gadget,

however instead of bypassing memory protection, it exploits branch misprediction. More

specifically, the attacker first trains the branch predictor to predict a desired outcome of a

branch, resulting in the execution of the gadget. It then executes the branch with malicious

data that produces a different outcome. Due to the prior training, the new outcome of

the branch is mispredicted. The gadget is speculatively executed with the malicious data,

leaking information through a micro-architectural channel, which the attacker observes to

retrieve the information.

5.3 Intel Software Guard Extensions and its Threat Model

Intel Software Guard Extensions (SGX) [183, 113, 29] is an extension of the x86 64

instruction set, supporting secure execution of code in untrusted environments. SGX creates

secure execution environments, called enclaves, which protect the code and data residing
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inside them from being maliciously inspected or modified. Additionally, SGX provides an

ecosystem for remote attestation of enclaves’ software and the hardware on which they run.

The SGX threat model assumes that the only trusted system components are the processor

and Intel-provided and Intel-signed architectural enclaves. After booting, only the processor

is trusted. The trust is extended to the architectural enclaves by hard-coding the public key

used to sign them into the processor. Other than the architectural enclaves, SGX does not

trust any software executing on the processor, including the operating system, the hypervisor,

and the firmware (BIOS). The processor’s microcode, however, is considered part of the

processor and hence trusted.

Furthermore, SGX does not trust external hardware components, such as the system’s

memory. The operating system can manage enclaves, but it is unable to view or modify

their contents. We note that the SGX threat model does not protect against denial-of-service

attacks, i.e. the operating system can prevent an enclave from executing. Furthermore, the

threat model does not protect against micro-architectural side channel attacks [130, 163,

286, 271].

We now describe the aspects of the SGX implementation relevant to this chapter. Further

information can be found in [131, 136, 69].

5.3.1 Memory Encryption

To protect enclaves’ data from the operating system, the firmware of the machine reserves

a range of memory called the Processor Reserved Memory (PRM), which contains a region

encrypted using the Intel Memory Encryption Engine (MEE) [107], as well as metadata

used for SGX and for MEE.

The main aim of MEE is to protect against an adversary that has physical access to

the memory of the host machine. To provide confidentiality of the data, MEE encrypts

the data in the PRM. To protect the data integrity, MEE maintains a Merkle Tree [185] of

stateful Message Authentication Codes (MACs), which ensure unauthorized modifications,
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including rollbacks, of the memory are detected. MEE operates between the LLC and the

system’s memory. Cache lines are encrypted when written to memory and decrypted and

validated when read from memory.

5.3.2 Enclave Creation

SGX extends the x86 64 instruction set with a variety of instructions for the operating

system, user code, and hypervisors to manage enclaves. Launching an enclave requires a

three-step sequence. First, the operating system populates initial data structures that describe

the enclave and assigns a contiguous range of virtual addresses, called ELRANGE, to the new

enclave. The contents of the ELRANGE is private to the enclave and can only be accessed

by code running within the enclave. Next, the operating system adds the initial (non-secret)

code and data to the enclave by using the EADD SGX instruction. Finally, the enclave is

initialized; the operating system may not add more code or data after initialization.

For each enclave, SGX keeps an enclave-identity comprised of the enclave developer’s

identifier and a measurement representing the enclave’s initial state. The developer’s

identifier, referred as MRSIGNER in SGX literature, is a cryptographic hash of the public

RSA key the enclave developer used to sign the enclave’s measurement. The enclave

measurement, representing the enclave’s initial state, is a cryptographic hash of those

parts of the enclave’s contents (code and data) that its developer chose to include in the

measurement. The SDK implementation includes in the measurement all contents added to

the enclave via EADD. Following the SGX nomenclature, we refer to this measurement as

MRENCLAVE.

5.3.3 Memory Management

To protect the contents of the ELRANGE, pages within this range must map to the PRM.

More specifically, part of the PRM is used for the Enclave Page Cache (EPC), in which

enclaves’ pages are stored. Each page within the ELRANGE of an enclave can be either
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Figure 5.1: SGX’s memory access flow, as described in [183].

loaded in the EPC, where the enclave can use it, or (securely) stored outside the EPC, where

the OS must load it into the enclave before it may be accessed. The operating system is

given the primitives required for managing the EPC, without being able to observe or to

modify the contents of the EPC pages. These mechanisms enable the operating system

to implement a secure paging facility for enclaves whose footprint exceeds the available

capacity of the EPC.

The ENCLS instruction supports several functions for loading and unloading pages to

and from the EPC and for managing the metadata associated with these pages. Specifically,

the EWB leaf instruction encrypts the contents of an EPC page and copies the encrypted

contents to the unprotected memory. EWB also maintains (in the EPC) the required metadata

that identifies the page’s version and virtual address in ELRANGE, to protect the evicted

page’s contents. Similarly, the ELDU instruction loads the encrypted contents of an EPC
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page from the unprotected memory.

Because SGX enclaves execute within the virtual address space of a process, the trans-

lation of enclave addresses to physical addresses must be trusted. However, the operating

system controls the mapping of virtual to physical addresses and can change this mapping

at will. Instead of ensuring the correctness of the operating system’s page table, SGX

maintains an internal data structure called the Enclave Page Cache Map (EPCM), which

tracks the mapping and the identities of frames within the EPC. The EPCM provides the

reverse mapping of the physical-to-virtual address mapping encoded in the page tables.

The purpose of the EPCM is to protect against attempts to bypass the SGX protection by

mapping an EPC page at a different virtual address. This protection is achieved by adding

several validation tests following a virtual to physical address translation. Figure 5.1 shows

a flow chart of the validation process. First (Step 1©), the processor checks whether the

access is from within an enclave. Non-enclave code is blocked from any access to the PRM

by providing abort page semantics for such accesses. That is, reads from the PRM return an

all-one data (0xFF) and writes to the PRM are ignored.

Code executing within an enclave can access both the unprotected (normal) memory and

its own ELRANGE. Thus, in Step 2©, the processor checks that the accessed virtual address

is within the ELRANGE of the accessing enclave. Failing this test, the processor reverts to

the default behavior, i.e. normal access for user memory and abort page semantics for PRM

access.

Finally, in Step 3©, the processor verifies that the data in the EPCM matches the attempted

access. If the verification fails, the processor issues a page fault to abort the access.

5.4 Reading Enclave Data

In this section, we describe the first attack, which allows us to read data located within

the address space of some victim SGX enclave. At a high level, the attack is constructed

to coerce Steps 1©, 2©, and 3© in Figure 5.1 to result in a page fault due to a failure of
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Figure 5.2: Malicious mapping. At creation time, the OS assigns the enclave a contiguous virtual
address range (ELRANGE). The Virtual Address of an enclave page may be assigned a physical
address of a page in the EPC. In SGX-ray, the attacker maps a virtual page within its own virtual
range to the victim’s physical EPC page.

verification of an EPCM test. We then use a variant of the Meltdown attack to subvert the

page fault and read the victim’s data.

Before describing each of the components in the attack we first explain how we establish

a cache-based covert channel, which is used by the speculative execution component of the

attack.

5.4.1 Establishing a Cache-Based Covert Channel

Similar to prior work [155, 59], we leverage the Flush+Reload covert channel. The

channel consists of three operations, abstracted as functions in Listing V.1.

Channel Initialization The prepare function is used to initialize the covert channel for

sending a byte, encoding the byte’s value via the cache state of a corresponding element

of probeArray. As such, to initialize the channel, the prepare function flushes all

the elements of probeArray from the CPU’s cache. To simplify the attack’s description,

we assume that probeArray is a global shared buffer, which is accessible to all the

subroutines used by the attack. We, therefore, omit its passing via function parameters and

access it as a shared global variable.
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Transmitting a Byte The send function takes a one byte argument data, and transmits

it via the covert channel by accessing a corresponding element from probeArray (Line 7),

thereby bringing it to the CPU’s cache. As we can only distinguish accesses at a cache-line

granularity, we multiply (data) by 256 before accessing probeArray. With a cache-line

size of 64 bytes, spreading indices by multiples of 256 ensures that different values of data

index to different cache lines. We find that using lower multipliers increases noise level due

to prefetcher activity.

Receiving a Byte The recv function reads the channel and returns a boolean array

indicating possible values of the transmitted byte. To receive the data transmitted by send,

recv reloads each of the addresses that send might have accessed, while measuring the

time required to perform the load (Lines 15-18). If the required time is below an (empirically

set) cache-hit threshold, this indicates that the send function might have transmitted the

value of guess via the cache-based covert channel. That is, the send function accessed

probeArray[guess*256], thereby bringing it into the CPU’s cache, accelerating the

subsequent probe access.

We note here that while the Flush+Reload channel is usually clean, some measurement

errors remain possible, typically due to unrelated system activity. Consequently, instead

of returning a single guess for the transmitted data, recv returns a vector of results that

indicates which values where possibly transmitted by send. In Section 5.4.5 we show how

to avoid these errors and correctly recover the transmitted data. Finally, to avoid the CPU’s

prefetcher modifying the cache state, recv does not access the indices of probeArray

sequentially and follows the approach of previous works [155, 59] by applying a simple

linear permutation to the order of accesses (Line 13).

116



1 prepare() {
2 for (i=0; i < 65536; i++)
3 flush(probeArray[i]);
4 }
5

6 send(data) {
7 t = probeArray[data * 256];
8 }
9

10 recieve() {
11 for (i = 0; i < 256; i++) {
12 // mix guess to avoid prefetching probeArray
13 guess = ((i * 167) + 13) % 256;
14 // compute address to probe
15 addr = &probeArray[guess*256];
16 t1 = rdtscp(); // read timer
17 temp = *addr; // access probing array
18 t2 = rdtscp(); // read timer
19 if (t2-t1 <= CACHE_HIT_THRESHOLD){
20 results[guess]=1;
21 } else results[guess]=0;
22 }
23 return results;
24 }

Listing V.1: Pseudocode of the Flush+Reload covert channel.

5.4.2 The Malicious Hosting Process

The attacker launches the victim enclave in a process and identifies the virtual address

range (ELRANGE) of the victim enclave inside the process’s address space. The range can be

located either via a malicious driver or by inspecting the contents of /proc/pid/maps.

At this point, a naive attacker might attempt to read directly the enclave address space.

However, the virtual addresses of the victim enclave are mapped to physical addresses

residing in the EPC, which is part of the PRM. Consequently, as Figure 5.1 shows, such

access would result in abort page semantics, i.e., the read returns a value with all bits set,

regardless of the actual memory content. Alternatively, the attacker may attempt to read the

enclave’s data by mounting a speculative execution attack (e.g., Meltdown). However, we

found that such attempts also result in abort page semantics.
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5.4.3 The Attacker Enclave

To cause a page fault, we first need to pass Step 1© of the memory access flow (Figure 5.1).

We achieve this by spawning a malicious attacker enclave, which performs the read access.

We note that there is no need for the attacker enclave to be vetted by Intel, as we can execute

the attack enclave in SGX debug mode. However, a naive use of an enclave is not sufficient

to coerce a page fault, because the ELRANGE of the attack enclave is different than that of

the victim enclave. Consequently, the validation in Step 2© of Figure 5.1 fails and the access

still results in abort page semantics.

5.4.4 Malicious SGX Driver

To overcome the ELRANGE check deeming the victim’s memory address outside of the

attacker enclave (Step 2© in Figure 5.1), we use a malicious SGX driver that introduces an

incorrect and malicious mapping from the virtual address space of the attacker’s enclave to

the physical EPC page of the victim enclave (see Figure 5.2). With the malicious mapping

in place, the attacker enclave can pass the ELRANGE check when attempting to read EPC

pages located in physical memory and belonging to the victim enclave.

However, as mentioned in Section 5.3.3, SGX prevents operating systems from mali-

ciously manipulating the virtual to physical mapping of enclave pages by keeping the reverse

mapping inside the EPCM (Figure 5.2). The EPCM contains the reverse mapping from the

physical addresses in the EPC to the virtual addresses in the enclave’s ELRANGE. When

memory is accessed from inside an enclave, the CPU checks the OS-controlled page-table

against the EPCM to verify that the OS-managed virtual to physical mapping matches

the page’s EPCM entry. As shown in Figure 5.1, memory is only accessed in case both

mappings match, and an EPCM page fault occurs if a mismatch is detected.

We observe that the EPCM is indexed according to the physical address of the EPC page,

meaning that the OS-managed virtual to physical mapping can be verified only after the

virtual to physical address translation completes. We conjecture that Intel implemented the
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memory access in parallel to the EPCM verification with both operations performed after

resolving the virtual to physical mapping. We now show how to exploit this fact to bypass

the EPCM page fault, thereby recovering data from the victim enclave.

5.4.5 Reading Cached Enclave Data

We begin the attack by assuming that the address space of the victim enclave contains

some secret that the attacker wants to read and that this secret happens to reside in the CPU’s

L1 cache. Later, in Section 5.4.7, we show how to remove this assumption, allowing the

attacker to read the entire address space of the victim enclave. The attack thus proceeds as

follows.

A Cross-Enclave Speculative Execution Attack We begin the attack by setting up a

malicious hosting process (Section 5.4.2) which initializes both the victim enclave and

the attacker enclave (Section 5.4.3). The process then uses the malicious driver to set up

a malicious mapping of the victim enclave’s page that contains the data we want to read

(Section 5.4.4). Finally, as explained above, in this section we assume that the data that the

attacker wants to read resides in the CPU’s L1 cache.

Next, the attacker enclave exploits the CPU’s branch predictor in order to mount a

speculative execution attack on the victim enclave. Unlike Spectre attacks [155], which

exploit the branch predictor to read (and subsequently leak) data from within the same

address space, the attack exploits the branch predictor to leak information across enclave

boundaries while eluding the page fault issued for the illegal access. At a high level, the

speculative execution attack consists of three phases, which we now describe.

Step 1: Branch Predictor Training Consider the pseudocode presented in Listing V.2,

which is executed by the attacker enclave using some dummyValue that is provided by

the malicious hosting process. During the first five iterations of the for loop in Line 3, the

selected address is dummyAddress (which is the address of the variable dummyValue)
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1 speculative_read(dummyValue, addressToRead ){
2 dummyAddress = &dummyValue;
3 for (i = 5; i >= 0; i--) {
4 selectedAddress =
5 ct_select(i, dummyAddress, addressToRead);
6 flush(&dummyAddress);
7 if (selectedAddress == dummyAddress){
8 // read value from selected address
9 value = *selectedAddress;

10 // send value via a Flush+Reload covert channel
11 // using the code in Listing V.1
12 send(value);
13 }
14 }
15 }

Listing V.2: Pseudo code of the attacker enclave. The function ct select outputs addressToRead
when i = 0 and dummyAddress otherwise.

and it is the case that the branch in Line 7 evaluates to true. Next, as it is the case that

selectedAddress equals dummyAddress, Lines 9 and 12 actually send the attacker-

provided dummyValue through the Flush+Reload cache covert channel. We note that

while this does not provide any additional information to the attacker, it does train the CPU’s

branch predictor that the branch in Line 7 typically evaluates to true.

Step 2: Attack Phase Consider the final iteration (i = 0) of the loop in Line 3. As

i = 0, the selected address in Line 5 is the address from which to read in the victim

enclave, as provided by the hosting process. Moreover, as Line 6 flushes the value of

dummyAddress, it is impossible to evaluate the branch in Line 7 until dummyAddress

is fetched from memory. Rather than waiting, the CPU consults the branch predictor and

speculatively executes the branch in Line 7, predicting the condition to be true. Next, as

selectedAddress equals addressToRead (since i = 0), both values actually point

(via the malicious mapping described in Section 5.4.4) into a physical page belonging to the

victim enclave. As the data located in addressToRead already resides in the L1 cache,

the CPU proceeds to speculatively execute Line 9, setting value to be the value located

in addressToRead. Finally, while dummyAddress is still fetched from memory, the
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CPU also proceeds to speculatively execute Line 12, thereby leaking value through a

cache-based Flush+Reload covert channel.

Step 3: Fault Suppression We note that executing Line 9 when i = 0 actually performs a

memory access to addressToRead, which points (via the malicious memory mapping)

to a physical page of the victim enclave. Next, as discussed in Section 5.4.4, SGX holds a

redundant copy of relevant page table entries in the EPCM, to verify the virtual to physical

mapping, as managed by the (potentially malicious) OS. Thus, as shown in Figure 5.1,

executing Line 9 for the case of i = 0 where the EPCM does not match the page table

entry should have resulted in an EPCM page fault. However, recall that the attack actually

executes Line 9 speculatively, while waiting for dummyAddress to arrive from memory

(after being flushed in Line 6). When the value of dummyAddress eventually does arrive

from memory, the CPU realizes the branch in Line 7 was mispredicted, for the case of i = 0,

and rolls back the execution of Lines 9—12 without emitting an EPCM page fault. However,

as the cache state is not rolled back, the host process can receive the value obtained from the

victim enclave, sent through the cache-based covert channel.

Relation to Meltdown and Spectre The attack describe in this chapter is, in fact, a hybrid

between the techniques proposed in the Spectre [155] and Meltdown [172] papers. More

specifically, it uses a technique similar to Meltdown where the attacker abuses speculative

execution to dereference a pointer to a privileged address space, and subsequently leaking a

result through a cache-based side channel. On the other hand, the attack also uses the fault

suppression technique from Spectre, as it mistrains the CPU’s branch predictor regarding

Line 7 of Listing V.2. While such a combination was theoretically considered in the

Meltdown paper [172], to the best of my knowledge, the work described in this chapter is

the first to provide an explicit implementation and empirical evaluation of this technique.

121



5.4.6 Recovering the Leaked Data

So far we have focused on describing how the attack reads data from the victim enclave

and transmits it using a cache-based covert channel. In this section, I focus on describing the

receiving side of the attack, which recovers the data of the victim enclave from the cache-

based covert channel. First, we notice that the code in Listing V.2 actually transmits two

values using the Flush+Reload based covert channel. Indeed, during the first five iterations of

the loop in Line 3 of Listing V.2, the code sends the value of dummyValue (as provided by

the attacker). Next, during the final iteration (i = 0), the code in Listing V.2 sends the value

located in addressToRead. Thus, to learn the value located in addressToRead, the

attacker must somehow distinguish the transmission of dummyValue from the transmission

of other values (presumably obtained during the last iteration of the loop in Line 3). The

problem is further compounded by the existence of sporadic channel noise that sometimes

corrupts some of the transmissions.

At a high level, we solve both issues using an approach similar to that of [155]. That

is, we transmit the value located in addressToRead multiple times, each time providing

a different dummyValue to be transmitted along with it. We then aggregate the results

across all the multiple transmission attempts, returning the most common value as the

value located in addressToRead. As the correct value located in addressToRead

remains the same while dummyValue is constantly changed, we expect that the most

common value transmitted via the cache-based covert channel will be the value located in

addressToRead.

More specifically, after creating the incorrect memory mapping between the attacker’s en-

clave and the victim enclave (as described in Section 5.4.4), the attacker proceeds to execute

the pseudocode presented in Listing V.3, setting addressToRead to be a virtual address

mapped to the victim enclave (via the incorrect mapping). At a high level, the pseudocode

presented in Listing V.3 performs the following for each try index i =maxTries, · · · ,1.

• Step 1: Preparing the Covert Channel The attacker starts every attempt to read the data
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1 read_value(addressToRead, maxTries){
2 int byteScores[256];
3 for (i = maxTries; i > 0; i = i - 1){
4 // prepare a cache-based coveret channel
5 // using the code in Listing V.1
6 prepare();
7 dummyValue = i % 256;
8 // read the value from the victim enclave and
9 // send it via the cache-based coveret channel

10 // using the code in Listing V.2
11 speculative_read(dummyValue, probingArray, addressToRead)
12 //receive scores for each possible value sent
13 //via the cache-based coveret channel
14 //using the code in Listing V.1
15 results = receive()
16 //aggrage the scores across many tries
17 for (j = 0; j < 256; j++){
18 byteScores[i] = byteScores[i] + results[i];
19 }
20 }
21 // return the byte value with the highest score:
22 return argmax(byteScores);
23 }

Listing V.3: Pseudocode of reading a single byte.

of the victim enclave by preparing a cache-based covert channel. This is achieved in

Line 6 of Listing V.3 by calling the prepare() function of Listing V.1.

• Step 2: Leaking the Victim’s Memory via Speculative Execution The attacker then

mounts a speculative execution attack on the victim’s enclave by invoking (Line 11) the

code presented in Listing V.2, supplying it with addressToRead and using the try index i

as the dummy value.

• Step 3: Receiving Data via the Covert Channel After mounting the speculative execu-

tion attack, the attacker calls the receive function (Line 15) of the cache-based covert

channel to receive the data transmitted during the speculative execution attack. As the

cache-based covert channel has been prepared, we expect the receive function (Line 15) to

return high scores for only two specific values: i % 256 (which is used as dummyValue

and sent during the branch predictor training phase in Section 5.4.5) and the value located

at addressToRead (which is sent during the attack phase in Section 5.4.5). The at-
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tacker then sums the scores for each value over all tries into the byteScores buffer,

where byteScores[j] corresponds to the score of a j-valued byte.

Recovering the Byte’s Value With the above steps performed for each try index

i = maxTries, · · · ,1, the attacker has collected statistics for each try index about

which values were received via the covert channel. As mentioned above, for

every try index i = maxTries, · · · ,1 we increase the score of bytesScores[i]

and bytesScores[value] where value is the data located at addressToRead.

Thus, after performing the above steps for all i = maxTries, · · · ,1, we expect that

bytesScores[value]will equal maxTrieswhile all other values in bytesScores

are significantly lower. Thus, returning argmax(byteScores) successfully recovers

value (Line 22 of Listing V.3).

5.4.7 Reading Uncached Enclave Data

The attack described thus far explicitly assumes that that the value located in

addressToRead is also present in the L1 cache. We now describe a method to re-

move this assumption, allowing the attacker to read any data located inside the victim’s

virtual memory, including data that is never accessed by the victim enclave.

Managing the Enclave Page Cache (EPC) Although SGX assumes an untrusted OS,

SGX nevertheless does rely on the host’s operating system for managing the limited space

allocated for the EPC in the machine’s physical memory. As explained in Section 5.3.3,

the operating system uses the EWB and ELDU leaf instructions to securely copy enclave

pages out of and back into the EPC. We observe that while decrypting and verifying an

encrypted enclave page, the ELDU instruction loads the page’s contents into the CPU’s L1

cache. Crucially, ELDU never evicts the page from the L1 cache, leaving the page’s contents

cached after the instruction terminates.
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Exploiting ELDU Thus, the attack performs the following. Going over the pages of the

victim enclave, the malicious SGX driver described in Section 5.4.4 first uses EWB to evict

the page from the EPC only to immediately load it to the EPC using the ELDU instruction.

As the ELDU instruction loads the page into the L1 cache and does not evict it afterwards,

we can use the attack presented in Section 5.4.5 to extract its content. Finally, the entire

attack process is repeated for the next page of the victim enclave.

5.4.8 Overall Attack Performance

In this section, we empirically evaluate the performance of the attack in retrieving data

from the address space of the victim enclave.

Reading Specific Memory Areas Using the setup described in Section 5.1.2, we begin

the evaluation with the assumption that the attacker desires to recover the contents of a

specific memory region inside the victim enclave. For this experiment, we launch a victim

enclave and filled 128 consecutive pages (512 KiB) of its memory with random data. Initially,

using the attack described in Section 5.4.7, we can read all of these pages, achieving a

reading speed of 1.63 KiB/sec and 56.6% accuracy.

Reducing Prefetching and Cache Noise Next, to minimize cache pollution and prevent

eviction of cache lines containing secret data, we disabled several memory prefetchers [273].

While this operation requires elevated privileges, recall that the SGX threat model assumes

a malicious OS, thereby giving the attacker elevated privileges on the target machine. Lastly,

to improve the attack accuracy, we gradually increased the value of maxTries in Line 3

of Listing V.3 if the extracted value is 0x00 or 0xFF. Employing these two optimizations

improves the read accuracy to 85.68%, with a read speed of 1.58 KiB/sec.

Eliminating Noise Caused by Entering and Leaving the Enclave Inspecting the errors

in the recovered data, we identify that these typically occur in bursts of cache line size
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(i.e., 64 bytes). Observing that entering an enclave and exiting it are complex operations,

we hypothesize that these operations generate sufficient noise in the cache to evict the

victim enclave data during the call to speculative read in Line 11 of Listing V.3.

We thus follow the approach proposed by [281, 216] of having a thread continuously

running inside the enclave calling speculative read, avoiding the enclave enter and

exit operations. Using this optimization we were able to successfully read 99.93% of the

bytes at 0.88 KiB/Sec.

Reading the Entire Enclave Contents To read the contents of an entire victim en-

clave, without knowing the specific virtual address of interest, we inspect the contents

of /proc/pid/maps to find the physical addresses that match each of the enclave pages.

While the entire range of the tested victim enclave is 16 MiB, only 4 MiB are allocated.

Due to the optimization of dynamically adjusting the number of repetitions in Listing V.3

if the extracted value is 0x00 or 0xFF, reading pages containing only zeros is significantly

slower, yielding a read speed of 13.5 bytes/sec, compared with 880 bytes/sec for other pages.

Overall, reading the entire enclave took 3:42 hours with 99.77% of the bytes successfully

read.

Attacks on Other Intel Processors The attack is not specific to the Kaby-Lake i7-7567U

processor, used in the above-described performance evolution and in principle can be applied

to any SGX-equipped CPU. Indeed, similar results were also obtained when attacking a

previous generation of Intel CPUs, namely Skylake i7-6770HQ, i7-6700K, i7-6700, and

i7-6500U.

5.5 Attacking SGX’s Sealing Mechanism

The attack described in Section 5.4 is capable of breaching SGX’s confidentiality

guarantees, by reading the virtual address space dedicated to any SGX enclave available on
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the target machine. It cannot, however, breach SGX’s integrity guarantees as it is unable to

modify the contents of enclave memory.

In this section, we show an attack against SGX’s sealing mechanism, which is a mecha-

nism designed to provide enclaves with encrypted and authenticated persistent storage. In

a nutshell, we use the attack from Section 5.4 to recover the sealing keys from within the

address space of the victim enclave. We then use the recovered sealing keys to unseal the

victim’s persistent storage and replace its content. Finally, we use the recovered sealing

keys again, this time to seal the new contents, by encrypting it and calculating the new

authentication information. The victim enclave can now successfully unseal the (malicious)

sealed data and, since the authentication information was correctly computed, believes the

data is genuine and has not been tampered with. Before presenting the attack, we now

provide further background information about the SGX sealing mechanism.

5.5.1 SGX’s Sealing Mechanism

SGX provides enclaves with a mechanism for an encrypted and authenticated persistent

storage. During CPU production, a randomly generated Root Seal Key, which is not kept

in Intel’s records, is fused in every SGX-enabled CPU. Using this key, the CPU can derive

a sealing key, which can be used to encrypt and authenticate information from within the

enclave’s address space. Data that is sealed with this key, i.e., encrypted and authenticated,

can be safely passed to the operating system for long-term storage, for example, on the

computer’s disk. SGX provides two types of sealing mechanisms, which we now describe

(See [29, 131] for additional details).

Sealing Using the Enclave’s Identity As described in Section 5.3.2, each enclave has a

unique field, called MRENCLAVE, which is a cryptographic hash of the contents used to

initialize the enclave code as well as some additional properties. Using the values of the

Root Seal Key, MRENCLAVE, and the CPU Security Version Number (SVN) an enclave
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can use the EGETKEY instruction to derive a unique sealing key for sealing data before

passing it to the operating system for long term storage. Note that as a consequence of

this approach, for the same Root Sealing Key (i.e., on the same CPU), different software

versions of the same enclave have different sealing keys. This prohibits both data migration

between different versions of enclaves as well as using these sealed keys for intra-enclave

communication.

Sealing Using the Developer’s Identity An alternative option to the one discussed above

is to generate the sealing key using the Root Seal Key, the SVN, and MRSIGNER (instead

of MRENCLAVE). As we explain in Section 5.3.2, MRSIGNER is a cryptographic hash

of the public RSA key of the enclave developer and is the same for all enclaves developed

by the same vendor. Thus, data sealed in this way is accessible by different versions of the

same enclave, as well as by different enclaves belonging to the same vendor.

5.5.2 Extracting SGX Sealing Keys

Key derivation using EGETKEY leaves the sealing key in the memory of the victim

enclave. Thus, in principle, it is possible to read this key using the attack, described in

Section 5.4 above. However, immediately after using it to encrypt or decrypt the sealed data,

the implementation of SGX’s sealing API erases the sealing key from memory. Hence, to

extract the key we need a method for launching the attack described in Section 5.4 during

the data sealing or unsealing process, before these keys are erased from the memory.

A Control Channel Attack We time the attack using a variant of the controlled channel

attack [286], inducing an Asynchronous Enclave Exit (AEX) when the enclave calls the

encryption function. More specifically, we first examine the shared object file of the victim

enclave and find the virtual addresses of the sealing and encryption functions inside the

address space of the victim enclave. Next, we use the malicious driver (subsection 5.4.4)

to evict from the EPC the page(s) containing the encryption and sealing functions. This
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induces a page fault and an asynchronous enclave exit whenever the victim enclave attempts

to call the encryption functions. However, as the pages containing the monitored functions

also contain code of other functions, the controlled channel attack will trigger an enclave

exit on accesses to these other functions and does not reveal exactly which function caused

the exit.

Determining the Precise Function Called We note that during an AEX, the contents of

all registers are saved in a dedicated State Save Area (SSA), including the instruction pointer

register, which points to the next instruction to be executed by the enclave upon return from

the AEX. The SSA is located in the enclave’s virtual address space, and therefore its contents

can be extracted using the attack from Section 5.4. To find the SSA’s address, we follow

the pointer to it found in a special enclave page called Thread Control Structure (TCS).

While the TCS is not readable even to the enclave, it is readable to the attack described in

Section 5.4.

The attack thus proceeds as follows. Upon a page fault due to an access to the target

page containing the code for the SGX sealing and encryption functions, we use the attack

from Section 5.4 to read the contents of the TCS and SSA and recover the value of the

instruction pointer. In the case that the instruction pointer points to a function other than

the SGX encryption or decryption functions, we load the evicted target page back into the

EPC, evict a benign page we anticipate will be accessed next, and resume normal enclave

execution. On the next page fault, caused by access to the benign page, we evict the target

page again.

However, if the instruction pointer points to the beginning of the encrypt or decrypt

functions, we know that the victim’s seal key is present in the victim’s memory, at an address

pointed by the RDI register, which is used by the compiler for passing function parameters.

The attack then proceeds to extract the contents of RDI from the SSA. The victim’s seal key

is then recovered from the address pointed by RDI using the attack from Section 5.4.
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5.5.3 Empirical Evaluation

We empirically evaluate the attack presented in this section, using the experimental setup

described in Section 5.1.2. We implemented a victim enclave which seals and unseals data.

We successfully launch the attack as described in this section and extract the sealing key

from within the victim enclave. Next, to validate we have the correct key, we implemented

custom seal and unseal functions that operate on a seal key, instead of calling SGX key

derivation instruction (EGETKEY). Using these functions, we can unseal the data sealed

by the victim enclave as well as to seal new (malicious) data, outside the victim’s enclave.

Running the victim enclave again, the new data was successfully unsealed without errors.

5.6 Attacking SGX Attestation

One of most compelling integrity properties provided by SGX is the ability of an enclave

to attest to a remote verifying party that it is running on genuine Intel hardware and not

on an SGX simulator. This attestation process proves to the remote party that the enclave

leverages the data confidentiality and execution integrity properties provided by SGX and,

therefore, the remote party can transfer secret data to the enclave. Specifically, the remote

party trusts the enclave will not intentionally leak the secret data provided by the remote

party and that any data sent by the enclave is a result of a trustworthy execution.

While the attacks described in Section 5.4 and 5.5 are capable of violating the confiden-

tiality of the entire address space of the victim enclave and the integrity of its sealed data,

they cannot make the victim violate program semantics, designed by the enclave writer.

In this section, we show that the attack described in Section 5.4 and 5.5, which violate

the confidentiality of the enclave address space and sealed inputs actually have devastating

consequences for the soundness property of SGX’s attestation protocol. More specifically, by

mounting the attack described above on the SGX’s Quoting Enclave, we are able to recover

the private attestation keys, used by the target machine for proving its genuineness. With
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these keys at hand, we are able to construct a malicious simulator which passes attestation as

if it was an SGX enclave running on a genuine Intel processor, while executing the simulator

code outside of an actual enclave. As the private attestation keys are all that distinguish

genuine Intel hardware from potentially malicious simulators, the remote verifying party

has no way of distinguishing between the two and thus cannot trust the computation’s output

to be correct.

Before describing the attack, we now provide some background about SGX’s provision-

ing, quoting, and attestation processes.

5.6.1 SGX Remote Attestation

The remote attestation process allows a remote verifying party to verify that a specific

software is correctly initialized and executes within an enclave, on a genuine Intel CPU. At

a high level, this is performed as follows (see [149] for an extended discussion).

In addition to the Root Sealing Key (Section 5.5.1), every SGX-enabled CPU is also

shipped with a randomly-generated Root Provisioning Key (Step 1, Figure 5.3). However,

unlike the Root Sealing key, Intel does retain a copy of the Root Provisioning Key, as it acts

as a shared secret between Intel and every individual CPU. Next, Intel provides two special

enclaves, called the Quoting Enclave and the Provisioning Enclave which are used in the

attestation process.

Attestation Key Provisioning The initialization phase of the SGX attestation protocol

consists of the Provisioning Enclave contacting Intel’s provisioning server, transmitting

the CPU’s provisioning ID, and claimed security version (SVN). As the provisioning ID

uniquely identifies a specific CPU, it is only accessible to the Intel-signed Provisioning

Enclave and is sent encrypted to the provisioning server under Intel’s public key. After

recovering the root provisioning key, corresponding to the CPU’s provisioning ID, the

provisioning server and Provisioning Enclave proceed to execute the Join phase of Intel’s
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Figure 5.3: SGX’s Attestation Process.

Enhanced Privacy ID (EPID) protocol [51], using the root provisioning key as a shared

secret (Step 2, Figure 5.3).

At a high level, Intel’s EPID protocol is a type of group signature that allows a CPU to

sign messages (using its private signing keys) without uniquely disclosing its identity. All

that an external observer (e.g., Intel) can do is to verify the signature (thereby becoming

convinced that it was signed by a genuine Intel CPU belonging to the group), without being

able to link it to any specific Intel CPU or to other signatures it previously signed. See [51]

for additional discussion.

Sealing the EPID Key The Join phase of the EPID protocol results in the Provisioning

Enclave obtaining a private EPID signing key, which is not known to Intel. The Provisioning

Enclave then generates a sealing key for sealing the EPID signing key, using the CPU’s Root

Sealing key, its SVN and the MRSIGNER value of the Provisioning Enclave. It then seals

the private EPID key using this sealing key and outputs it to the OS for long term storage
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(Step 3, Figure 5.3). Notice that as the Provisioning Enclave is provided and signed by Intel,

its MRSIGNER value is a hash of Intel’s public key. Consequently, any Intel-signed enclave

can unseal the CPU’s private EPID key by regenerating the sealing key used to seal it. While

this design feature is indeed useful, as it allows the Quoting Enclave (also signed by Intel)

to unseal the private EPID key, it is also dangerous as the OS actually has an encrypted copy

of the CPU’s private EPID keys.

Local Attestation When an enclave wants to prove to a remote verifier that it is running

on genuine Intel hardware with a specific security version, it first needs to prove its identity

to the Quoting Enclave, which is another special enclave provided and signed by Intel,

via a processes referred to by Intel as local attestation [29, 131]. At a high level, this is

done by having the proving enclave use the EREPORT instruction, which prepares a report

containing the MRENCLAVE and MRSIGNER values of the proving enclave. The report is

also signed using a key that is only accessible to the Quoting Enclave. The proving enclave

then passes the report to the Quoting Enclave, which proceeds with the remote attestation

process (Step 4, Figure 5.3).

Remote Attestation Upon receiving the report from the proving enclave, the Quoting

Enclave performs the remote attestation process, which we now describe. Indeed, after

verifying that the report was correctly signed by the EREPORT instruction, the Quoting

Enclave proceeds with unsealing the EPID private key that was originally sealed by the

Provisioning Enclave. Recall that the EPID private key was sealed using a sealing key

derived from the CPU’s SVN version, Root Sealing Key, and the MRSIGNER value of the

Provisioning Enclave. As both the Quoting Enclave and the Provisioning Enclave are signed

by Intel (and thus have the same MRSIGNER value), the Quoting Enclave can regenerate

this sealing key and subsequently unseal the private EPID key. Next, using the unsealed

private EPID signing key, the Quoting Enclave executes the Sign phase of the EPID protocol

and signs the report given to it by the proving enclave, creating an attestation quote. Finally,
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the Quoting Enclave returns the quote to the proving enclave, which in turn forwards it to

the remote verifying party (Step 5, Figure 5.3).

Attestation Verification After the proving enclave sends the signed quote to the remote

verifying party, the remote party interacts with Intel’s Attestation Server (IAS [139]) and

provides it with the quote it obtained from the Quoting Enclave (Step 6, Figure 5.3). Next,

IAS performs the Verify phase of the EPID protocol while ensuring that the signer’s private

EPID key has not been revoked by Intel. Intel’s server completes the attestation by sending

its response (OK, SIGNATURE INVALID, etc.) to the remote party. The server’s response

also contains the quote itself and is signed with Intel’s signing key, generating a signed

attestation transcript which can later be verified by any party that trusts Intel’s public key.

5.6.2 Extracting SGX Attestation Keys

In this Section, we describe the attack on SGX’s attestation protocol. As explained

above, the Quoting Enclave, which can access the EPID signing keys, will not sign a local

attestation report without first verifying it. Moreover, as mentioned in Section 5.6.1 above,

the operating system actually has a copy of the EPID private keys, which are sealed by a key

derived from the CPU’s Root Sealing Key. The attack thus proceeds as follows.

Step 1: Recovering the Sealing Keys Using the attack described in Section 5.5 on the

Quoting Enclave, the attack recovers the sealing keys used for sealing the EPID signing

keys.

Step 2: Unsealing the EPID Signing Keys With the above sealing keys, the attack

proceeds to unseal the private EPID keys, originally sealed by the Provisioning Enclave.

Step 3: A Malicious Quote Enclave Using the source code of Intel’s Quoting En-

clave [133], we have constructed a malicious Quoting Enclave that signs any local attestation
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report with the EPID keys, obtained in Step 2 above, without first verifying it.

Step 4: Breaking Attestation Consider a malicious software that would like to masquer-

ade as a specific enclave and prove its “authenticity” and SGX security properties via remote

attestation. Given an enclave to masquerade, the malicious software first generates a false

local attestation report with the values of MRENCLAVE and MRSIGNER corresponding to

the enclave it wants to masquerade, as well as other metadata required for generating the

local attestation report. It then sends this report to the malicious Quoting Enclave.

We notice here that the malicious software is unable to sign the local attestation report,

as it doesn’t have access to the appropriate signing key. However, as the malicious Quoting

Enclave does not verify the report, the report is not required to be signed. Next, using the

unsealed EPID keys, the malicious Quoting Enclave generates a malicious attestation quote

by signing the local (false) attestation report. This malicious quote is then sent to the remote

party.

Finally, the remote verifying party attempts to verify the malicious quote using Intel’s

Attestation Server (IAS). As the quote was indeed correctly signed by the malicious Quoting

Enclave, assuming that the EPID keys used are valid and have not been revoked, Intel’s

attestation server will accept the malicious quote and generate a signed transcript of the

response. The transcript falsely convinces the remote party that the enclave is running on

a genuine Intel CPU (which is designed to provide confidentiality and integrity), while it

is actually running on the malicious, non-SGX software, and does not offer any security

guarantees.

5.6.3 Empirical Evaluation

In this section, we empirically demonstrate the feasibility of the attack on SGX’s

attestation mechanism.
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Extracting EPID Keys Using the setup from Section 5.1.2, we have successfully extracted

the EPID sealing keys from a genuine SGX Quoting Enclave and subsequently unsealed the

machine’s private EPID keys.

Signing Fake Attestation Quotes Demonstrating the ability to sign arbitrary attestation

quotes, we created a local attestation report setting the MRENCLAVE field, “representing”

the SHA-256 of the enclave’s initial state, to be the string “Is your enclave cheating on you?”,

the MRSIGNER, “representing” the SHA-256 of the public key of the enclave writer, to be

“SGX-ray: Trustworthy Speculation”, and the report’s debug flag to 0, thereby indicating that

the enclave is a production enclave. We have also populated the report’s body (commonly

used for establishing a Diffie-Hellman key exchange with the enclave corresponding to the

report) to be “Mary had a little lamb, Little lamb, little lamb, Mary had a....”. Finally, we

signed the report via the malicious Quoting Enclave using the above-described unsealed

EPID signing keys, thereby producing an attestation quote.

Quote Verification Verifying the validity of the quote, we have contacted Intel’s Attesta-

tion Server (IAS) and provided it with the above generated quote. As explained in [51, 149],

the attestation server will only approve the quote if it can verify that the quote’s EPID

signature is correct. Since we have correctly extracted a non-revoked EPID private signing

key, the attestation server deemed the forged quote as correct and replied with “isvEnclave-

QuoteStatus:OK”, signing its response with Intel’s private key and accompanied it with the

appropriate certificate chain leading to Intel’s CA certificate.

5.7 Conclusions

In this chapter, I show that the memory protection of SGX enclaves does not protect

against a Meltdown-like attack. I build a generic read primitive that allows us to easily

read the memory of victim enclaves, including pages that are not accessible to the enclaves
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themselves. Thus, the attack breaks all of the confidentiality guarantees of SGX. We show

how the read primitives can be used to read secrets from an enclave, with a specific example

of retrieving the seal key from the Intel Quoting Enclave. Retrieving the seal key of an

enclave allows us to read and modify the persistent storage of the enclave. Thus, the attack

breaks the integrity guarantees of the sealing mechanism. The seal key of the Quoting

Enclave gives us access to the host’s attestation key. With access to this key, I demonstrate

that we can sign arbitrary attestation quotes, eroding the trust in the SGX ecosystem.

The Foreshadow attack exposes the fragility of the SGX ecosystem, where a single

vulnerability can result in cascading compromises that erode the security and trust properties

of SGX. Intel has deployed mitigations for the specific vulnerability [121]. Zooming out of

SGX-specific attacks, speculative execution attacks are proved to have devastating security

implications [56]. In the next chapter I explore a fundamental approach for redesigning

modern processors to defeat these types of attacks.
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CHAPTER VI

NDA: Preventing Speculative Execution Attacks

at Their Source

6.1 Introduction

Speculative execution attacks [173, 154, 124, 269, 282, 120, 256, 272, 55, 241, 153, 242,

176, 156, 43, 59, 177] exploit micro-architectural behavior and side channels to exfiltrate

sensitive information from a system. Unlike classical software exploits that modify and

observe only architectural state (such as registers and memory), speculative execution

attacks have demonstrated that attackers can retrieve secrets by controlling and observing

micro-architectural state (e.g., the cache) during speculative wrong-path execution.

Speculative execution attacks can be classified into two main categories. One class (e.g.,

Spectre [154], Spectre 1.1 [153], and others [242, 176, 43, 156, 59]) allows malicious code

to mis-steer a victim program’s control flow (e.g., by carefully mis-training branch predic-

tors) to execute specific instructions on the speculative wrong path. Although wrong-path

instructions are ultimately squashed (with no effect on architectural state), the victim pro-

gram is coerced into leaking its own memory contents through a micro-architectural channel.

For instance, Chen et al. [59] show how control-flow in an SGX secure enclave [183] can

be steered to leak its own protected memory. I classify these attacks as control-steering

attacks (Figure 6.1a).
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Figure 6.1: Control-steering vs. chosen-code attacks. In control-steering, the attacker steers control
flow in existing victim code, inducing unwanted access to the victim’s memory space. In chosen-code,
the attacker generates code that accesses privileged data or data that belongs to another context.

Another class of attacks [173, 269, 282, 120, 256, 272, 55, 241] enables unprivileged

attacker code to access privileged memory that is temporarily exposed during wrong-path

execution. For instance, Meltdown [173] allows reading kernel memory; Foreshadow [269,

282, 120] allows reading hypervisor, OS, SMM, or SGX memory; and LazyFP [256] allows

reading AES keys from AVX registers used by another process. MDS attacks [272, 55, 241]

allow reading recently accessed memory belonging to other processes. Since the attacker

generates the code, they can select arbitrary instruction sequences in both correct-path and

wrong-path execution. I classify these attacks as chosen-code attacks (Figure 6.1b). These

two classes of attacks are fundamentally different and therefore require different approaches

for mitigation.

Existing software defenses against speculative execution attacks work by modifying

a program’s source code to block attack-specific mechanisms. Current software defenses

for control-steering attacks—such as Retpoline [134, 96], IBPB [141], and improved

lfence [73] instructions—focus on preventing the attacker from steering the execution of

victim code. Unfortunately, these defenses are not immediately applicable to existing bina-

ries. Specifically, software mitigations against chosen-code attacks involve modifying the

OS, hypervisor, and SMM code [175, 188, 101, 120]. A recent study by Google [182] dis-
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cusses why software approaches aimed at mitigating timing channels by manipulating timers

are insufficient. The authors show that any optimizations performed by micro-architecture,

no matter how negligible, can become observable using an amplification technique. Even

if code modifications are made, these defenses can be bypassed. For instance, attackers

can redirect control flow to evade fence instructions (e.g., by mis-training the branch target

buffer (BTB) [124, 154] or the return stack buffer (RSB) [176, 156, 153]).

Hardware defenses, on the other hand, have the potential to obviate the need to modify

existing software [288, 150, 220, 152, 228, 141, 260, 237]. The first disclosed specula-

tive execution attacks [173, 154, 124] use caches as a covert channel to leak data from

wrong-path execution. Consequently, initial hardware defenses—such as InvisiSpec [288],

SafeSpec [150], and others [220, 152, 228, 260, 237]—seek to prevent wrong-path execution

from leaving secrets in the cache that can later be recovered. Taram et al. [260] suggests a

hardware modification to automatically insert lfence micro-ops where needed. However,

the authors claim mainly to address Spectre v1 attacks that use the data cache as a covert

channel.

While these techniques are effective, a recent study [56] noted that closing only the

cache covert channel is insufficient to stop speculative execution attacks, since the cache is

only one of many potential covert channels. Netspectre [242] and SMoTher Spectre [43]

have already shown that secrets can be transmitted via the FPU or via port contention [16].

In Section 6.3, I further show how to transmit secrets via the BTB.

Rather than isolating predictive structures [141] or sealing individual covert chan-

nels [288, 150, 237]—a ceaseless arms race—I instead seek to close off speculative execution

attacks at their source. In this chapter I propose to treat potentially wrong-path values as

secret and prevent these secret values from propagating through the micro-architecture. The

key observation is that speculative execution attacks require a chain of dependent wrong-path

instructions to access and transmit data into a covert channel. By preventing potentially

wrong-path values from propagating, we break these dependency chains, thwarting the code
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sequences required to mount attacks.

I propose NDA—Non-speculative Data Access—a technique to restrict speculative data

propagation in out-of-order (OoO) processors. NDA only allows instruction outputs to flow

to dependents if the source instruction is considered safe. NDA restricts data propagation by

preventing tag broadcast for unsafe instructions, delaying wake-up of their dependants in

the issue queue until the source instruction becomes safe.

I present a taxonomy of the building blocks of speculative execution attacks, show

how each class of attack depends upon data propagation in wrong-path execution, and

demonstrate how we can define safe vs. unsafe to prevent the data flow required by the

attack. By composing various restrictions on when an instruction becomes safe, I create a

design space of NDA variants. The variants differ in (1) the constraints they place on the

dynamic execution schedule (and therefore, performance), (2) the locations from which

secret data might be extracted (e.g., whether general purpose registers are protected), and

(3) the kind of speculation attacks they prevent (e.g., control-steering vs. chosen-code).

NDA defeats all 25 documented [56, 43, 272, 55, 241] speculative execution attacks

without the need to modify any existing code. Importantly, however, NDA does not preclude

all speculation or OoO execution. For example, one NDA policy treats all instructions after

an unresolved branch as unsafe. These instructions may still execute speculatively OoO, but

they are restricted from propagating their output to dependents until all preceding branches

resolve. As my evaluation demonstrates, despite delayed wake-ups, the vast majority of

the performance gap between in-order (the only other model known to eliminate all known

speculative execution attacks) and unconstrained OoO execution is recovered.

I simulate NDA designs on the SPEC CPU 2017 benchmark suite and compare its

performance to InvisiSpec [288] on the same setup. InvisiSpec blocks data-cache-based

attacks and introduces 7.6-32.7% overhead in the evaluation setup. In comparison, NDA

blocks all covert channels. I show that an NDA policy that mitigates control-steering

vulnerabilities, which are fundamental to unconstrained OoO execution, slows execution by
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only 10.7% and is 4.8× faster than in-order. If we also preclude Meltdown-like hardware

implementation flaws, NDA’s strictest policy slows down execution by 125% compared to

an insecure OoO processor and is 2.4× faster than in-order execution.

In short, in this chapter I make the following contributions:

• I introduce a speculative-execution-attack taxonomy based on how attacks induce

wrong-path execution.

• I design NDA, a new technique to control speculative data propagation in out-of-order

processors to defeat speculative execution attacks. NDA offers multiple variants with

differing security/performance tradeoffs.

• I evaluate six NDA variants on SPEC 2017 and show they are effective and efficient.

6.2 Background

Data Propagation in OoO Processors. Figure 6.2 illustrates conceptual steps in an

instruction’s life-cycle in a modern OoO processor. Upon dispatch into the reorder buffer

(ROB), an instruction is not ready to execute until all of its source operands—coming from

instructions S1 and S2 in Figure 6.2—are ready (step 1). Once all source operands are ready,

the instruction issues and enters the execution pipeline (step 2). When execution completes

(step 3), the instruction wakes its dependents (D1-D5) by broadcasting a tag corresponding

to its destination physical register to waiting instructions (step 4), marking those instructions

ready.

The essence of the NDA technique is to delay tag broadcast, i.e., transition from step

3 to step 4. Rather than waking dependent instructions when their input operands become

ready, NDA wakes them up when their input operands are safe. We expand on this basic

concept in Section 6.5.

Speculative Execution Attacks. Speculative execution attacks exploit side-effects of

wrong-path execution, which are typically left undefined by processor vendors. While the

contents of architectural registers and memory are guaranteed to reflect precise state of only
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committed instructions, wrong-path execution affects micro-architectural structures. For

instance, a wrong-path cache access may allocate new lines or modify the cache replacement

order; these changes are not reverted when wrong-path instructions are squashed. A variety

of other micro-architectural structures are also not reverted during squash, for example,

branch direction predictors (e.g., pattern history table), pre-decoded micro-op/trace caches,

memory dependence predictors, prefetchers, TLBs, fine-grain power management state (e.g.,

for FPU/AVX units), and performance counters. State changes in these micro-architectural

structures can create side channels, where the state can be inferred, for example, based on

timing particular execution sequences. We refer to a side channel that is used to intentionally

transmit data as a covert channel. Attackers can use wrong-path execution to transmit data,

via a covert channel, that is later inferred by correct-path execution and hence leaks that

data into architectural state.

6.3 Problem Analysis

We next classify speculative execution attacks based on three fundamental attack phases

that exist in all known attacks. We then describe the existing mitigation techniques, how

they block the attacks, and their shortcomings. Lastly, to demonstrate that closing specific

side channels is insufficient, we show an attack via a new covert channel—the BTB.

6.3.1 Classifying Attacks

Attack Phases. All speculative execution attacks of which we are aware comprise

three key phases—access, transmit, and recover—shown in Figure 6.3. In the Access

Phase ( 1©), secret data is loaded into a temporary register. During the Transmit Phase ( 2©)

the secret data is covertly transmitted using micro-architectural side effects that are not

reverted when wrong-path instructions are squashed. Finally, in the Recover Phase ( 3©),

the transmitted secret is recovered to non-speculative state (e.g., by observing the memory

access latency). Whereas the instructions involved in phases 1© and 2© are speculatively
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Figure 6.2: Life-cycle of instructions in OoO processors. Even after the instruction has completed
execution (3), the dependant instructions (D1-D5) will not be able to access the output until it is
broadcast (4).

executed and eventually squashed, the phase 3© results are committed to the architectural

state. Wrong-path execution is essential to these attacks, as it evades software and hardware

protection mechanisms that prevent the secret data from leaking through architectural state.

Control-Steering and Chosen-Code Attacks. We classify attacks based on their

methodology for performing the Access Phase ( 1©) and the Transmit Phase ( 2©). We

divide attacks based on their Access Phase into two categories, which correspond to different

attacker threat models. We further subdivide these two attack classes according to the

covert channel exploited in the Transmit Phase. table 6.1 illustrates this taxonomy for

currently-known attacks.

In control-steering attacks, the attacker subverts a victim program’s control flow to

speculatively execute instructions that, as a side-effect, leak data into a covert channel. This

attack class leaks data to which the victim application has hardware access privileges, but
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Figure 6.3: Three phases of speculative execution attacks. Prior defenses focus mostly on the cache
covert channel, failing to prevent leaks through other channels such as the FPU [242], the BTB
(Section 6.3), and others.

are intended to be secret and might be protected (e.g., by permission or bounds checks) in

software. For example, SGXPectre [59] coerces a secure SGX [183] enclave to access and

leak its encrypted memory. We illustrate control-steering attacks in Figure 6.1a.

Unlike a classical security vulnerability, wherein the attacker directly hijacks the program

counter (e.g., a stack-smashing attack that overwrites a return address), speculative control-

steering attacks only misdirect wrong-path execution, for example, by mis-training branch

predictors to direct instruction fetch to an attacker-selected target. Hence, they leave no

trace in the committed instruction sequence, but still leak data into a covert channel. Several

approaches that use control-steering have been demonstrated [154, 176, 156, 153].

In control-steering attacks, the attacker does not typically introduce new instructions
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1 for (i=0; i < 256; i++) // init channel
2 clflush(probeArray[i*512]);
3 // Phase 1© - access secret data:
4 // The attacker mis-trains the branch:
5 if (x < array_size) { // predicted taken
6 // wrong-path, x >= array_size
7 secret = array[x];
8 // Phase 2© - covertly transmit secret:
9 t = probeArray[secret * 512];

10 }
11 // ... somewhere else in attacker’s code
12 // Phase 3© - recover secret:
13 for (guess = 0; guess < 256; guess++) {
14 addr = &probeArray[guess*512];
15 t1 = rdtscp(); // read timer
16 temp = *addr; // access probing array
17 t2 = rdtscp(); // read timer
18 if (t2-t1 <= CACHE_HIT_THRESHOLD)
19 results[guess] += 1;
20 }

Listing VI.1: Exfiltrating secret data using Spectre v1 control-steering and the cache covert channel.

into the victim binary, rather, the attacker composes a series of gadgets from existing code,

similar to Return Oriented Programming (ROP [247, 234, 52]).

By contrast, in chosen-code attacks—the second category based on the Access Phase—

we consider an adversary who can generate and execute arbitrary code sequences to mount

the attack. Such an adversary already has access to its own registers and memory; these

attacks instead seek to circumvent hardware protections that preclude the attacker from

accessing secret data in correct-path code. For instance, Meltdown [173] accesses ker-

nel memory; Foreshadow [269, 282, 120] accesses SGX and hypervisor memory; and

LazyFP [256] accesses AVX registers used by another process. These attacks exploit imple-

mentation flaws in the relative timing of hardware protection checks and data flow between

wrong-path instructions—the secret data propagates among instructions and can be leaked

into a covert channel before protection checks squash the wrong-path execution. We show

chosen-code attacks in Figure 6.1b.

Sample Attack Code. Listing VI.1 illustrates these phases for the Spectre v1 [154]

bounds check bypass attack [124], which is a control-steering attack. In this attack, the
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1 // Phase 1© - access secret:
2 secret = *kernel_addr; // Faulting load
3 // Phase 2© - covertly transmit secret:
4 // Executed in wrong-path
5 // before fault is fired:
6 t = probeArray[secret * 512];
7 // Phase 3© - recover secret:
8 // see Listing VI.1

Listing VI.2: Exfiltrating secret data using the Meltdown chosen-code attack and a cache side-
channel.

victim code includes instructions that access array at a given index x (Line 7). Before

accessing array, the victim code performs a bounds check on x (Line 5). To circumvent

the bounds check, the attacker mis-trains the branch direction-predictor by invoking the

victim code repeatedly with a valid x.

To mount the attack, the attacker now calls the victim code with an illegal value of

x. The attacker chooses x such that array[x] will refer to a location in the victim’s

memory containing a secret. The direction predictor mis-predicts the branch on Line 5

as taken, executing Lines 7–7 on the wrong path. During wrong-path execution, the code

accesses ( 1©) the secret on Line 7. It then transmits ( 2©) the secret (still in wrong-path) on

Line 7. Later, in correct-path execution, the attacker executes Lines 13–20 to recover ( 3©)

the secret from the cache side-channel. The timing for each access to probeArray on

Line 16 will vary based on whether or not the corresponding cache line was loaded on Line 7.

In the evaluation, we illustrate the difference in access timing (blue squares in Figure 6.4),

which reveals the secret data.

Listing VI.2 depicts an example of a chosen-code attack—a simplified Meltdown exploit.

Whereas the illegal load on Line 2 will eventually fault, the instruction on Line 6—which

executes on the wrong path—will leave evidence in the cache from which the attacker can

recover the secret. The recover phase is identical to that in Listing VI.1. To avoid trapping

into the fault handler, the attacker may use control-steering techniques to ensure the faulting

load executes under a mis-predicted branch [173]. Nevertheless, we classify the attack as

chosen-code since the attacker controls the executed binary.
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Table 6.1: Taxonomy of attacks based on secret data access method 1© and covert channel 2©. NDA
blocks all existing attacks regardless of the covert channel they use. Most common attacks use the
d-cache side channel to exfiltrate secret data. All currently known chosen-code attacks use loads
and load-like operations. Future attacks may use other instructions or other covert transmission
channels.

6.3.2 Limitations of Existing Defenses

Current Mitigations. Hardware defenses mitigating control-steering attacks try to pre-

vent the attacker from mis-training branch predictors (IBRS and STIBP [141]) or use a barrier

instruction to prevent speculation after a branch or context switch (lfence/IBPB [141]).

Unfortunately, recent attacks [153, 176, 156] reveal techniques to overcome these mitgations.

SSBD [141, 27] disables Speculative Store Bypass (SSB, explained in Section 6.4.1) to

prevent attackers from reading data that was overwritten [124, 295]. However, SSBD only

blocks Spectre v4. and introduces up to 8% overhead [142].
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Software defenses, such as Retpoline [96] and RSB stuffing [134], protect call and

ret instructions from mis-steering. Other compiler approaches [210, 98] create a data

dependency between a branch condition and code that follows the branch, disabling spec-

ulation. However, these compiler approaches can only defeat Spectre v1 [154] attacks. A

recent study suggested a compiler modification that also blocks Spectre v2 attacks [249].

Unfortunately, this approach can only defeat cache-based attacks with 68-247% overhead.

Chosen-code attacks are mitigated by preventing speculative loads from accessing re-

stricted memory. For instance, Kernel Address Space Layout Randomization (KASLR [101])

and Kernel Page Table Isolation (KPTI [175, 188]) prevent Meltdown attacks from reading

privileged kernel memory. KASLR [101] randomizes the kernel address space similar to

how ASLR is used to protect user-space processes. KPTI manages separate page tables for

the kernel and user-space processes, preventing user code from issuing even illegal loads to

kernel memory. KPTI swaps page tables on every transfer between CPU privilege levels.

Mitigating Foreshadow [269, 282, 120] requires modifications to the OS, hypervisor, and

SMM code, such as modifying page-table management, altering virtual machine scheduling,

and adding L1 cache flushes when switching security domains [282, 120].

Unfortunately, all these defense mechanisms block only specific exploit techniques.

Therefore, one must deploy a myriad software and hardware defenses to be resilient against

all control-steering and chosen-code attacks.

Recent work suggests preventing both control-steering and chosen-code attacks by

blocking the cache side channel [150, 288, 220, 237], thus interdicting the transmit phase.

However, given the abundant supply of covert channels (see Figure 6.3), defeating specula-

tive attacks by closing each channel individually is challenging. Exploits have already been

demonstrated for other channels. Netspectre [242] demonstrated that the power state of the

FPU is a viable speculative covert channel. SMoTher Spectre [43] showed how to transmit

data via port contention [16]. We next show an attack via the BTB.

The BTB Covert Channel. We demonstrate a new covert channel that can be exploited
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even when the cache covert channel is not available—the BTB. The BTB stores a mapping

between branch instructions’ addresses and the associated target addresses. For example, a

call instruction located at address A to a function located at address B installs the mapping

A => B in the BTB. The next time the processor fetches the call instruction at address A,

the processor’s front-end will speculatively redirect fetch to address B.

If the BTB predicts correctly (Figure 6.5a), the speculatively-fetched instructions are

eventually retired. However, if the prediction is wrong, the processor will squash the wrong-

path execution, starting at the mispredicted instruction at address B, before executing the

correct path. This recovery process is illustrated in Figure 6.5b. In the experiments on

the gem5 [44] simulator, we observe that it takes ~16 cycles for the BTB miss to resolve,

wrong-path execution to be squashed, and execution to resume at the correct target (1+2

in Figure 6.5b). Crucially, updates to the BTB during speculation are not reverted by the

squash, making it an effective covert channel. Note that (as with caches) in the absence of

security concerns, filling the BTB (and updating its replacement policy) during speculation

may be advantageous to avoid future BTB misses.
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To demonstrate the BTB covert channel, we construct a variant of Spectre v1 [154]

that leaks a secret byte through a speculative BTB update, as illustrated in Listing VI.3.

To leak a single byte, the covert channel comprises 256 distinct functions (targets in

Line 2). During both the Transmit Phase and Recover Phase, we invoke targets only

from a single call site, jumpToTarget (Line 6), ensuring that BTB entries mapping to

targets all originate from the same PC and therefore conflict in the BTB.

When the branch on Line 10 is mispredicted, the attacker can access any value from

the process’ address space, depending on the value of x. The attacker then transmits the

secret by speculatively calling jumpToTarget with the secret value in Line 13. If the

speculation window is large enough, the processor updates the BTB entry for the call

instruction in Line 6 based on secret.

The access phase must be repeated for every guess (Line 19) since the recover phase

is destructive: The execution of Line 21 alters the contents of the BTB to point to

targets[guess]. To confirm that the BTB acts as the covert channel in the attack,
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it is important to validate that execution time differences do not arise from i-cache or d-

cache hit or miss latency; no change to the cache hierarchy during the attack may depend

upon the secret value. To validate the attack, we ensure the targets array in Line 2 and

all 256 target functions are cached during access, transmission, and recovery.

We report the effectiveness of the BTB covert channel on gem5 via the orange circles in

Figure 6.4. During the Recover Phase, in lines 17-24, all the wrong guesses will incur the

16-cycle prediction and squashing delay, as depicted in Figure 6.5b. The correct guess will

execute faster, as depicted in Figure 6.5a.

The BTB covert channel is one of many potential machine-specific transmission chan-

nels. We use the BTB channel PoC to demonstrate that NDA is agnostic to any specific

transmission channel (Section 6.6).

6.4 Threat Models

NDA design variants address four different threat models, which vary in the locations

from which secret data are stolen and whether the attacker may mount control-steering

or chosen-code attacks. NDA’s goal is to eliminate side-channels created in wrong-path

execution. Correct-path side channels have been studied in prior work [228, 289, 290].

All threat models are agnostic to the covert channel used in the attacks. For control-

steering attacks, we consider two threat models, based on where secrets reside. The first

model considers attacks against secrets stored in memory or special registers, as is the case

for all currently-known control-steering attacks. The second control-steering threat model

additionally considers hypothetical attacks that leak secrets residing in general-purpose

registers (GPRs). In the third threat model, for chosen-code attacks, we consider only threats

against secrets in privileged memory and registers, since chosen-code attacks presuppose

attacker-controlled GPRs. Lastly, the fourth threat model comprises the union of these

threats, considering both control-steering and chosen-code attacks for secrets in memory,

special-registers, and GPRs.
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1 // array of 256 unique target functions
2 void (*targets[256])(void);
3 // all jumps are from the same location,
4 // hence the same BTB entry is consulted
5 void jumpToTarget(int index)
6 { targets[index](); }
7 void victim_function(x) {
8 // Phase 1© - access secret data:
9 // The attacker mis-trains the branch:

10 if (x < array_size) { // predicted taken
11 secret = array[x]; // wrong path
12 // Phase 2© - covertly transmit secret:
13 jumpToTarget(secret); // updates BTB
14 } }
15 // ... somewhere else in attacker’s code
16 // Phase 3© - recover secret:
17 for (guess = 0; guess < 256; guess++) {
18 // Induce victim to leak secret value
19 victim_function(x);
20 t1 = rdtscp(); // read timer
21 jumpToTarget(guess); // BTB prediction
22 t2 = rdtscp(); // read timer
23 if (t2-t1 <= CORRECT_PATH_THRESHOLD)
24 results[guess] += 1;
25 }

Listing VI.3: Exfiltrating secret data using the Spectre v1 control-steering attack and the BTB
side-channel.

6.4.1 Leaking Memory via Control-Steering

The first step of all known control-steering attacks is to steer wrong-path execution into

code accessing a secret in memory or manipulate execution timing to cause a load to observe

a stale value. We assume the attacker can steer execution at any branch instruction and

manipulate the execution timing of all instructions. Branch instructions include all variants

of jmp, call, and ret.

We do not consider phantom branches, where the BTB is mis-trained to steer control

flow from a program counter value that does not correspond to a branch. The dispatch stage

stalls micro-ops whose opcode is unknown. Hence, if the BTB predicts a branch where there

is none, dispatch will stall at the phantom branch until its opcode is obtained, which will

resolve the misprediction and cause any younger fetched instructions to be discarded before

they enter the OoO back-end. Wrong-path instructions that are squashed before dispatch are
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not a threat.

We also do not consider potentially faulting instructions as steering points in control-

steering attacks. Whereas a fault can result in wrong-path execution, we consider attacks

based on faulting instructions (e.g., Meltdown, Foreshadow, LazyFP, MDS, etc.) as part of

the threat model for chosen-code attacks.

Speculative Store Bypass. Also known as SSB, or Spectre variant 4 [124], this attack

performs the Access Phase ( 1© in Figure 6.3) by having a malicious speculative load bypass

a store whose address is still unresolved. The malicious load then speculatively yields stale

(secret) data. Although this attack may not necessarily require misdirected control flow

in the Access Phase, we consider it a special case of control-steering, since the attacker

leverages an existing code snippet. If the attacker could choose the code, they could read the

stale data without the need to exploit the speculative store-bypass.

6.4.2 Leaking GPRs via Control-Steering

All currently-known control-steering attacks extract secrets residing in memory. Never-

theless, we recognize that future attacks might extract secrets residing in the victim’s GPRs.

So, the second threat model considers the attacker of Section 6.4.1 that steers the victim’s

control flow to leak GPR contents.

In this scenario, the steered victim’s code already possesses the secret in a GPR. At this

point, the access phase of the control-steering attack ( 1© in Figure 6.3) has already (possibly

unintentionally) been done by the victim. We therefore focus on hindering the attacker from

performing the second phase ( 2© in Figure 6.3)—transmitting the GPR-resident secret. All

known attacks require data flow between micro-ops during the transmit phase to preprocess

the secret (e.g., calculate an offset relative to a base address) before it can be leaked.

We do not prevent an attack that leaks a secret using only a single speculative micro-

op. In principle, it may be possible to covertly transmit GPR-based secrets using a single

micro-op. For instance, if a GPR contains a secret value that corresponds to a valid virtual
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memory address, the attacker can speculatively issue a load that will fetch this address

into the cache hierarchy, thus performing the transmit phase in a single micro-op. However,

such a scenario would require (a) a secret value that forms a valid memory address, and

(b) victim code that voluntarily loads the secret into a GPR shortly before the vulnerable

steering point. No known attacks (cf. table 6.1) exploit this behavior.

6.4.3 Leaking Memory with Chosen-Code

For chosen-code attacks, we consider attackers that attempt to access secrets residing in

memory. Specifically, we consider an attacker who can influence code generation to control

both correct-path and wrong-path execution. We treat read operations from special-purpose

registers, such as AVX (as abused in LazyFP [256]) and Model Specific Registers (MSRs,

in Meltdown variant 3a [124]) like memory accesses in crafting our defense—the special

instructions (e.g., rdmsr) used to access these registers are treated like loads in our solution.

In chosen-code attacks, the attacker already controls their own GPRs and we therefore do

not consider the contents of any GPR to be secret.

Instructions are guaranteed to be correct-path when they retire. At retirement, the head

of the ROB satisfies hardware permission and memory-ordering checks. Ergo, retired

instructions cannot leak secrets accessed from the wrong-path.

6.4.4 Combining the Threat Models

Finally, we consider NDA’s most conservative threat model—a combination of all threats

outlined above. We suppose an attacker that conducts both (a) control-steering attacks to

extract secrets from the victim’s memory and GPRs, and (b) chosen-code attacks to access

privileged memory and special registers. This combined threat model is similar to the

practical approach taken by Windows and Linux, which deploy mitigations for both classes

of attacks [175, 188, 141, 190, 267].
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Operation Description Strict 
propagation

  Permissive 
propagation

Load 
restriction

  Strict prop.
+ load rest. 

1 mov   rax,[rbp-0x848] prepare call
2 mov   rdi,rax prepare call
3 callq 0x8c2 call victim function

∙∙∙∙∙∙∙
4 mov   eax,[rip+0x201732] load array_size
5 cmp   r12,rax if(x < array_size) 
6 jae   0x912 if(x < array_size) 
7 lea   rax,[r12+rbx*1] calc addr. &arr[x] 
8 movzx eax,[rax] Load arr[x] (access phase)
9 movzx eax,al char s=arr[x](preprocess)

10 shl   eax,0x9 s=s*512 (preprocess)
∙∙∙∙∙∙∙ Preparing &probe[0]

11 movzx edx,[rdx+rax*1] t&=probe[s] (Transmit phase)

r x c br x c b r x c b

r x c b
r x c b

r x c b
r x c b
r x c b

r x c
r x

r x c b
r x c b

r x c b
r x c b
r x c b

r x c b
r x c b

r x

r x c

r x c b

r x c

r x c b
r x c b

Not ready to execute 

Ready & executing Completed, not broadcast  (unsafe) Completed & broadcast  (safe)

Resolved branch Unresolved branch <blank>

r x c

r x c b

r x c

r x c

a b c d

Figure 6.6: An ROB snapshot during the execution of Spectre v1 (Listing VI.1), with different NDA
policies. The branch (call) at line 3 has been resolved, therefore the load in line 4 is safe under strict
and permissive propagation and can broadcast (wake-up dependants). Under the load restriction
policy, the instructions in lines 1,4, and 8 can be executed but are not safe until retirement. Therefore,
line 2 cannot be issued to execute.

6.5 Design

NDA’s main design goal is to mitigate both control-steering and chosen-code attacks

while reaping the benefits of OoO speculative execution as much as possible. We next

discuss different variants of NDA, which provide different policies for speculative data

propagation depending on the threat model. Different NDA data propagation policies offer

different security guarantees and have corresponding performance implications. We build

NDA upon a baseline physical register-based OoO micro-architecture [294].

The key insight behind NDA’s design is that speculative instructions (either in the correct

or the wrong-path) can safely execute without leaking secrets as long as their inputs are

results of safe instructions. We define instructions as safe with respect to the threat models

such that wrong-path execution can not leak any more information into a side channel than

a correct-path instruction. Consequently, we eliminate the gap between speculative side

channel attacks and non-speculative side channels, which security-conscious programmers

already must reason about. The different NDA policies, listed in rows 1-6 of table 6.2, define

which instructions are considered safe such that they may wake-up dependent instructions
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(allow instructions to advance from step 3 to step 4 in Figure 6.2).

To mitigate control-steering attacks, NDA restricts data propagation following an un-

resolved branch or unresolved store address (rows 1-4 in table 6.2), depending on where

secrets reside and if store-bypass (SSB) is a threat. We consider any instruction follow-

ing a predicted branch as unsafe until the branch target and direction are resolved. We

also consider loads that follow a store with an unresolved address as unsafe (see By-

pass Restriction in Section 6.5.2). To mitigate chosen-code attacks, NDA introduces a

propagate-on-retire mechanism (row 5), which defeats all 11 documented chosen-code

attack variants [56, 272, 55, 241] and similar future exploits that rely on speculative loads.

In this policy, the value returned by any load instruction (or other instructions that read

sensitive registers, such as rdmsr on x86) are considered unsafe until the load is ready

to retire. Finally, the two mechanisms can be combined to defend against both classes of

attacks (row 6).

6.5.1 Strict Data Propagation

NDA addresses control-steering attacks by defining unresolved branches and unresolved

stores—for which predictions may be incorrect—as the borders between safe and unsafe

speculation. When a branch micro-op enters the ROB, it is unresolved. Since the fetch

unit predicts which instructions to fetch following the branch (via the BTB, RSB, etc.),

subsequently dispatched micro-ops may be wrong-path. Similarly, when a store micro-op

enters the ROB, it is unresolved until its address is calculated. If a store’s address has

not been calculated, loads that follow the store may erroneously access stale data if their

addresses overlap. We consider two variants of data propagation restrictions with regards to

control-steering attacks: strict and permissive. Both variants leverage a Bypass Restriction

mechanism to defeat SSB attacks. We now describe strict propagation and then explain

permissive propagation and bypass restriction in Section 6.5.2.

Strict Propagation (rows 3-4 in table 6.2) defends against threat models where secrets
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may reside in memory, special registers, and GPRs (i.e., the union of the threats described

in §6.4.1 and §6.4.2). Under this policy, NDA marks all micro-ops dispatched after an

unresolved branch or store as unsafe. Unsafe instructions may wake up and compete to issue

as in a baseline OoO (i.e., they may issue when their operands become ready). But, when an

unsafe micro-op completes execution (step 3 in Figure 6.2), it writes back to its destination

physical register, but does not broadcast its destination tag to dependent instructions, does

not mark its destination register ready, and does not forward its output value on the bypass

network. Hence, dependent instructions will not issue and cannot observe the unsafe value.

Managing Value Propagation. When the eldest outstanding micro-op resolves, it marks

instructions in the ROB safe until the next eldest unresolved branch/store. ROB entries are

extended with three bits: unsafe tracks if the instruction follows a still-unresolved micro-

op, exec tracks if the instruction has executed, and bcast tracks if the instruction has

broadcast its tag to wake dependents. Upon instruction completion, if unsafe, tag broad-

cast is deferred. When a micro-op resolves, the unsafe bit for subsequent ROB entries

until the next unresolved branch/store are cleared. !unsafe && exec && !bcast

instructions arbitrate for tag broadcast ports, competing with instructions completing in the

current cycle (completing instructions have priority to avoid pipeline stalls); bcast is set

when broadcasting.

When safe instructions broadcast their tags to the issue queue, they mark their destination

register(s) ready, waking their dependents (step 4 in Figure 6.2). We do not add additional

tag broadcast ports to the ROB over baseline OoO; the number of broadcasts is unchanged,

broadcasts are time-shifted until preceding micro-ops resolve. For example, assume that the

broadcast bandwidth is four and that two instructions completed this cycle. If another three

instructions were marked safe, two of these newly-safe instructions can wake dependents;

the third waits for the next cycle. In the majority of the evaluation, we assume broadcast

and wake-up of newly-safe instructions fit within the existing wake-up critical path. In

Figure 6.9e, we include a sensitivity study that shows the impact of further delay due to
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critical path constraints; a one-cycle delay reduces CPI by less than 3.6%.

Figure 6.6 illustrates an ROB snapshot when executing code akin to Listing VI.1,

depicting various NDA data propagation policies. Column a© shows the ROB snapshot

under strict propagation. The branch at Line 6 has not resolved, so all following instructions

are marked unsafe. Whereas the instruction at Line 7 executes to completion, it is unsafe

and therefore cannot wake the dependent instruction on Line 8.

Branches resolve when the branch micro-op completes execution. Upon a misprediction,

all younger micro-ops in the ROB are squashed and renaming tables are recovered, discarding

values in physical registers that never became safe, preventing potentially secret data from

leaking.

6.5.2 Permissive Data Propagation

For threat models where NDA only protects secrets in memory or special registers, we

can safely optimize performance via permissive propagation (rows 1-2 in table 6.2), which

marks only load instructions after an unresolved branch/store as unsafe. Arithmetic and

control instructions are unconditionally marked safe at dispatch.

The key intuition for this policy is that only loads can introduce new secret values into

the microarchitecture. Loads that precede the eldest unresolved micro-op will commit

their value to architectural GPRs, which are not protected under this threat model. Note

that wrong-path execution due to exceptions (As in Meltdown or Foreshadow) are also not

addressed under this threat model; we address these as chosen-code attacks (§6.5.3).

For example, consider two dependent instructions i1 and i2 fetched after an unresolved

branch. If i1 is an arithmetic instruction (any non-load), it is considered safe. Therefore, i1

can broadcast its output upon completion—allowing i2 to issue—without waiting for the

branch to resolve.

This threat model also protects the contents of special registers (e.g., AVX or MSRs,

see LazyFP [256] and Meltdown v3a [124]). The instructions to read these registers (e.g.,
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rdmsr) are treated like loads and are also marked unsafe when dispatched after an

unresolved branch.

Lines 7-8 in Figure 6.6 illustrates the difference between strict (column a©) and per-

missive (column b©) propagation. In contrast to strict propagation, the lea instruction on

Line 7 is marked safe since it is not a load operation. Therefore, lea wakes its dependent

instruction on Line 8 immediately.

Bypass Restriction (BR). To defeat SSB [124] attacks we introduce a new mechanism

for safe store bypass, which we use in tandem with both strict and permissive propagation

(rows 2,4 in table 6.2). In this scheme, unlike Intel’s SSBD [141], loads are allowed to

execute even if they bypass stores in the Load Store Queue (LSQ). However, loads are

marked unsafe until all bypassed stores’ addresses are resolved. If a bypassed store resolves

its address in a way that generates an order violation, the offending load and younger

instructions are squashed by the memory dependency unit.

6.5.3 Load Restriction

NDA protects against chosen-code attacks by blocking data propagation from speculative

loads (row 5 in table 6.2), such as in Meltdown [173], Foreshadow [269, 282], LazyFP [256],

and MDS attacks [272, 55, 241]. These attacks exploit specific flaws in processor implemen-

tations where data propagates from a load that will eventually fault. Each of these flaws has

been individually patched [120, 141]. However, given the complexity of modern processor

implementations, one might expect similar implementation errors in the future. Moreover, in

the chosen-code context, there are a myriad of ways to induce wrong-path execution (faulting

loads, Intel TSX transaction aborts, interrupt delivery, breakpoint and syscall instructions,

performance counter overflow, load replay due to memory-order misspeculation [294, 88],

etc.) As prior work [288] suggests, effective defenses must address the common problems

underlying chosen-code attacks.

We therefore propose a blanket NDA protection policy, load restriction, which both
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Control 
steering

(memory)

Control 
steering
(GPRs)

Chosen
code

Overhead
vs. OoO

Speedup
wrt. IO

1 Perm. propagation 10.7% 4.2x
2 Perm. propagation+BR 22.3% 3.8x
3 Strict propagation 36.1% 2.5x
4 Strict propagation+BR 45% 2.3x
5 Load restriction 100% ?
6 Full protection (4+5) 125% ?
7 InvisiSpec-Spectre*      7.6%
8 InvisiSpec-Future* 32.7%

Control 
steering

(memory)

Control 
steering
(GPRs)

Chosen
code

Overhead
vs. OoO

Speedup
wrt. IO

1 Perm. propagation 12.1% 4.1x

2 Strict propagation 28.5% 3.7x

3 Load restriction 87.5% 2.5x

4 Full protection (1+3) 103.1% 2.3x

Mechanism

*   

Defeats all covert channels            Defeats d-cache based attacks 
Defeats all covert channels, but does not block SSB
Defeats all covert channels, except single micro-op GPR-attacks 
Our evaluation of InvisiSpec[69] on SPEC 2017 is detailed in §6.1

Table 6.2: NDA propagation policies (rows 1-6) and the attacks they prevent. Bypass Restriction (BR)
adds protection against SSB (Spectre v4). Special registers, such as AVX and MSRs (LazyFP [256]
and Spectre v3a [124]), are protected by treating their accesses like loads. None of the 25 documented
attacks [56, 43] leak data from GPRs nor without at least two dependent micro-ops.

blocks all 11 documented [56, 272, 55, 241] chosen-code attacks and offers the potential

to prevent future variants. Under load restriction, loads are considered unsafe until they

are the eldest unretired instruction (i.e., at the head of the ROB). With load restriction,

the micro-architecture guarantees that a load will wake its dependents if and only if it

will immediately retire. Column c© of Figure 6.6 illustrates an ROB snapshot when load

restriction is used. The loads in Lines 1, 4 are independent and can execute concurrently,

enabling high Memory & Instruction Level Parallelism MLP & ILP. However, each will

wake its dependents (at Lines 2, 5) only when it retires.
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6.5.4 Preventing All Classes of Attacks

To defeat both control-steering and chosen-code attacks, NDA’s final policy composes

strict propagation and load restriction (row 6 in table 6.2). This NDA policy is the most

defensive, so we call it full protection. Column d© in Figure 6.6 illustrates an ROB snapshot

when the full-protection policy is used. The loads on Lines 1 and 4 are issued and executed

to completion, but are not considered safe. In contrast to the load-restriction case presented

in Column c©, the arithmetic operation on Line 7 is considered unsafe in Column d© and

therefore cannot wake the instruction on Line 8. However, parallel execution is still possible

(e.g., lines 4 and 7 still execute in parallel) unlike in an in-order processor.

6.5.5 Security Analysis

Strict Propagation with Bypass Restriction. This policy protects secrets in memory

and hinders exfiltration of secrets in GPRs via control-steering attacks. Spectre v1, v1.1, v2,

v4 (SSB) [124], and ret2spec [176, 156] are blocked. Most importantly, NetSpectre [242],

SMoTher Spectre [43], and the BTB attack (Section 6.3)—which are not addressed by prior

work [288, 220, 260]—are defeated. For secrets residing in memory, the output of the access

phase ( 1© in Figure 6.3) cannot be used by the transmit phase 2© in the same wrong-path

execution window. For an attacker to leak contents from a GPR the transmit phase in a

successful attack must comprise only micro-ops that do not depend on one another and that

only depend on values from instructions prior to the branch. We note that all existing attacks

(cf. table 6.1) require multiple dependent micro-ops to transmit secrets.

Permissive Propagation with Bypass Restriction. This policy protects secrets in

memory but does not protect secrets in GPRs (e.g., rax). This level of protection is on par

with the threat model presented in recent work [220, 260] with the added benefit of blocking

all covert channels. All 14 documented control-steering attacks [56, 43], including those

listed above, are blocked. Any load following an unresolved branch or store is marked

unsafe. Therefore, the transmission phase 2© will not be able to read the output of the
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Figure 6.7: NDA and InvisiSpec [288] performance on SPEC 2017. Error bars depict the 95%
confidence intervals.

load. However, unlike in strict propagation, non-load micro-ops are marked safe. If the

secret already resides in a GPR, the attacker can pre-process and transmit the secret using a

sequence of wrong-path operations.
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Parameter Value
Architecture X86-64 at 2.0 GHz
Core (OoO) 8-issue, no SMT, 32 Load Queue entries, 32 Store Queue entries, 192 ROB

entries, 4096 BTB entries, 16 RAS entries
Core (in-order) TimingSimpleCPU from gem5
L1-I/L1-D Cache 32kB, 64B line, 8-way set associative (SA), 4 cycle round-trip (RT) latency, 1

port
L2 Cache 2MB, 64B line, 16-way SA, 40 cycle RT latency
DRAM 50ns response latency

Table 6.3: Gem5 simulation configuration.

Load Restriction. The load restriction policy addresses all known chosen-code attacks,

including Spectre v3, v3a, v4 [124], LazyFP [256], Foreshadow/NG [269, 282, 120], and

MDS attacks [272, 55, 241]. In chosen-code threat models, the attacker already controls the

executed code, and can thus trivially access the contents of their own GPRs and memory

space. Load restriction protects secrets in privileged memory and special registers. Specifi-

cally, any micro-op depending on a load (or load-like instruction) will be ready only after

the load retires. Upon retirement, the values returned by loads are no longer speculative

and are accordingly safe to read.

Load restriction also has the potential to block future chosen-code attacks that access

memory and special registers. Additionally, given that none of the 25 existing speculative

execution attacks [56, 43] leak secrets from GPRs, the load restriction policy prevents all

known control-steering attacks.

Full Protection. Combining load restriction with the strict propagation policy (row

6 in table 6.2) offers the most defensive design point of NDA. The full-protection policy

defeats all 25 known control-steering and chosen-code attacks exfiltrating data from memory,

special registers, and hinders the attacker’s ability to transmit contents of GPRs.
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Figure 6.8: Spectre v1 when using NDA permissive propagation policy. The cycle differences in
Figure 6.4 (Spectre v1 without NDA) are eliminated. Thus, NDA conceals the secret byte’s value,
regardless of the covert channel.

Figure 6.9: Aggregated statistics over SPEC 17 benchmarks. (a) NDA extend the cycles spent on
commit and backend stalls. (b),(c) MLP & ILP is still high across NDA policies. (d) As expected,
NDA causes delays in latency-to-issue. However, overall impact on CPI is substantially smaller. (e)
The impact of NDA logic latency on CPI is relatively small.

6.6 Evaluation

We next demonstrate NDA’s effectiveness in mitigating speculative execution attacks

and evaluate the performance of six different NDA policies.
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6.6.1 Experimental Setup & Methodology

We evaluate NDA on gem5 [44] running the SPEC CPU 2017 benchmark suite [253].

Table 6.3 shows the CPU configuration, which reflects a Haswell-like microarchitecture and

matches that used in recent architectural studies of speculative execution attacks [288]. To

obtain results that represent SPEC benchmark performance with statistical confidence

guarantees, we extend gem5 to enable a simulation sampling methodology similar to

SMARTS [285]. We run SPEC benchmarks on real hardware (Haswell Xeon E5-2699) and

dump snapshots of their execution state at fixed intervals using gdb. We have developed

a new tool to convert these snapshots to gem5 checkpoints and resume their execution in

simulation [15, 14].

From each checkpoint, we warm simulation state for 5 million instructions and measure

performance for 100,000 instructions. We validate that the number of unknown cache

references during measurement (references to a cache set for which not all tags are initialized

in warmup) is negligible (i.e., the worst-case performance error due to unknown cache

references is much smaller than the sampling error). We report 95% confidence intervals of

CPI in Figure 6.7.

We compare NDA’s performance to both variants of InvisiSpec [288] with the same

SMARTS methodology and gem5 configuration, using the source code provided by the au-

thors [13]. NDA’s and InvisiSpec’s performance for the baseline configuration on SPEC 17

are similar within the confidence interval. Absolute performance numbers for InvisiS-

pec, depicted in Figure 6.7, differ from the original paper due to different benchmarks

(SPEC 06 vs. SPEC 17) and sampling methodology (a single billion-instruction segment vs.

SMARTS sampling). Post-publication, the InvisiSpec authors released a bug fix that affects

performance, which we include.
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6.6.2 Effectiveness of NDA

We evaluate Spectre v1 [154] (Listing VI.1 and Listing VI.3) on unmodified gem5

without NDA protections. As illustrated in Figure 6.4, both the cache and the BTB covert

timing channels clearly leak the secret byte. For the correct guess of the secret byte, the

cache covert channel yields a ~140-cycle decrease due to a cache hit. The BTB covert

channel similarly yields a ~16-cycle decrease due to the overhead of mis-prediction, as

shown in Figure 6.5. However, when running the Spectre v1 cache and BTB attacks with

permissive propagation enabled, NDA blocks the speculative data leakage regardless of the

covert channel in use. As depicted in Figure 6.8, the correct secret value is indistinguishable

from the other 255 candidates.

6.6.3 NDA Performance

We evaluate NDA’s performance with ten different configurations; the six NDA policies

described in Section 6.5, two baselines, and two InvisiSpec configurations. The baseline

configurations are the in-order and unconstrained OoO processors listed in Table 6.3. The

in-order processor represents the extreme case of no speculation and is thus trivially immune

to speculative execution attacks. We note that, besides NDA’s load-restriction and full-

protection, the in-order processor is the only other execution model known to defeat all 25

documented speculative execution attacks, regardless of the covert channel they use. The

unconstrained OoO processor offers the best performance, but is insecure.

Cycles Per Instruction (CPI). Figure 6.7 depicts the CPI of all configurations across all

benchmarks, normalized to OoO (averages at the bottom right). The overheads of different

policies are summarized in table 6.2. Defeating SSB with Bypass Restriction (BR) adds

6.6-9.9 % overhead. In the case of permissive propagation with BR (row 2 in table 6.2)—

the highest performance policy which prevents all 14 control-steering vulnerabilities—the

average performance loss relative to the OoO baseline is 10.7%. This policy thwarts all

known control-steering attacks and recovers 96% of the performance gap between the OoO
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and In-Order baselines.

In the case of full protection (row 6 in table 6.2)—the most secure policy—the average

performance loss is 125%. This policy prevents all 25 documented variants of both control-

steering and chosen-code attacks while also offering potential protection against future

attacks. Despite the restrictions it imposes on the dynamic schedule, full protection still

closes 68% of the performance gap between in-order and OoO.

Figure 6.9a depicts an average time breakdown for all OoO design variants. The bars

are normalized to the baseline OoO design point. Commit cycles are cycles in which at

least one instruction retires. Memory stalls are cycles in which the head of the ROB is an

incomplete memory operation. Back-end stalls are cycles in which the head of the ROB is a

non-memory operation that is not yet ready to retire. Front-end stalls are cycles in which

the ROB is empty or cycles which are spent squashing wrong-path execution. NDA policies

restrict data propagation and thereby limit dynamic scheduling. Therefore, on average,

fewer instructions are committed in a given cycle, increasing the overall number of commit

cycles. Since instruction-level parallelism for both memory and non-memory instructions is

reduced, more cycles are spent on memory stalls and back-end stalls. Front-end stall cycles

generally vary little across designs, on average contributing only 2% of the difference in

cycles.

Wake-up Latency. NDA introduces a delay between instruction completion and tag

broadcast. Whereas broadcast delay does not directly affect CPI, the delay propagates

to dependent instructions in the ROB by delaying their issue. We measure this effect by

measuring the average delay instructions experience from dispatch to wake-up under each

design. The average latencies across all benchmarks are shown in Figure 6.9d. NDA policies

add on average 4-39 cycles. This increased latency also manifests in up to 78% increase in

cycles spent on back-end stalls, shown in Figure 6.9a. However, the wake-up latency has a

modest impact on overall performance (CPI).

Memory and Instruction Parallelism (MLP/ILP). The favorable performance of
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NDA compared to the in-order processor can be explained by observing the Memory- and

Instruction-Level Parallelism of each profile. The geometric means of MLP & ILP across

all benchmarks are depicted in Figure 6.9b-c. We follow Chou et al [65] and report MLP

as the average outstanding off-chip misses when at least one is outstanding. Whereas the

MLP & ILP in the various NDA profiles are at times lower than the OoO baseline by as

much as 6% and 44% (respectively), they are better than the in-order baseline processor

by 72% and 39%, where MLP & ILP cannot exceed 1.0. These results suggest that NDA

enables execution parallelism among off-chip misses despite the scheduling restrictions of

speculative instructions. Importantly, NDA does not typically restrict the issue time of loads,

only when they may wake dependents. Ergo, typically only dependent loads are delayed,

which do not add to MLP or ILP.

Comparison to InvisiSpec [288]. Since NDA and InvisiSpec have different threat

models, detailed in table 6.2, a direct comparison is not straight forward. In the evaluation,

InvisiSpec-Spectre defeats all cache-based control-steering attacks with 7.6% slowdown. In

comparison, NDA blocks control-steering attacks, regardless of the covert channel they use,

with 10.7%-36.1% slowdown, depending on where secrets reside. For futuristic chosen-code

attacks, InvisiSpec-Future introduces 32.7% overhead compared to 125% in NDA. However,

NDA blocks all covert channels, including port contention [43], the FPU [242], and the

BTB (Section 6.3).

6.7 Related Work

The first micro-architectural side-channel attacks used the cache side channel to infer

AES keys from a neighboring process or VM [217, 42, 45]. Since then, a myriad of side

channel techniques have been developed, such as Flush+Reload [292] and other advanced

techniques [18, 84, 146, 85, 222, 104, 296, 291]. We refer to these attacks as classical

cache attacks. These attacks do not leverage speculative wrong-path execution. Other work

demonstrates how the cache side channel can be used as a covert channel [284, 181, 287].
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DRAM [4] and issue ports [16, 43] are also demonstrated as viable covert channels.

The first speculative execution attacks—Meltdown [173] and Spectre [154]—leveraged

prior work on cache covert channels to transmit data obtained from wrong-path execution

via the data-cache (d-cache). Other speculative attacks using various techniques to access

secrets or steer execution also leveraged the d-cache covert channel [176, 256, 156, 59,

153, 269, 282, 120, 124, 77]. Since the d-cache covert channel is widely exploited, initial

defenses [288, 150, 220, 237] have exclusively focused on protecting the d-cache. However,

these defenses do not mitigate non d-cache speculative execution attacks [242, 56, 270, 43,

177]. Specifically, Mambretti et al. [177] demonstrated covert transmission of secrets via

the instruction-cache (i-cache).

Unfortunately, it is not trivial to apply the same d-cache defense-techniques to provide

i-cache protection. For example, Sakalis et al. [237] delay speculative loads on an L1

cache-miss to prevent speculative d-cache modifications. However, the authors mention it

is difficult to apply the same policy to i-cache misses with low overhead: While d-cache

delays do not preclude other in-flight instructions from executing OoO, i-cache delays stall

the front-end and starve the entire pipeline.

InvisiSpec [288] allows speculative loads to execute using a dedicated buffer, only

committing updates to the d-cache once speculation resolves. While the authors hypothesize

that a similar method could be applied to the i-cache, they do not implement or evaluate the

performance overhead of such i-cache protection. In comparison to cache-only defenses,

NDA is agnostic to the covert channel used in the Transmit Phase and blocks all known

attacks.

Conditional-Speculation [220] protects secrets placed in memory, but not in GPRs.

In comparison, NDA’s strict-propagation prevents the attacker from performing the pre-

processing required for the Transmit Phase. NDA thus defeats NetSpectre and SMother-

Spectre attacks, while providing better protection for secrets in registers.

Prior work [260, 83] suggest mitigations to defeat the Spectre v1 variant. Taram et

170



1 stop_speculative_exec();
2 register long secret = *secret_addr;
3 // ... operate on secret
4 secret = 0; // scrub secret
5 resume_speculative_exec();

Listing VI.4: Closing the registers-to-memory security gap.

al. [260] suggest Context Sensitive Fencing, a hardware modification to automatically

insert lfence micro-ops where needed, to block the d-cache channel. SpectreGuard [83]

suggested delaying broadcast of completed micro-ops to defeat Spectre v1 across multiple

covert channels. However, as stated by the authors, their main goal is to block Spectre v1

attacks. NDA defeats all known variants regardless of the covert channel they use.

Recent work (such as DAWG [152], CEASER [228], and others [289, 290]) hinder the

attacker’s ability to deterministically cause a cache line collision with another process or

VM, thwarting most cache-based side and covert channels. However, these techniques do

not mitigate attacks that use non-cache covert channels.

We addressed related work on deployed defense mechanisms for speculative execution

attacks in Section 6.3.2.

6.8 Discussion

NDA is capable of defeating both control-steering and chosen-code attacks while per-

forming considerably better than in-order processors. However, even though NDA blocks all

known attacks, it may still be possible to use a control-steering attack to read general-purpose

registers if there exists a feasible single micro-op that can leak the register’s contents.

To protect registers, one can introduce an instruction or a processor mode that temporarily

disables speculation and out-of-order execution during the window of vulnerability when

a secret value is loaded from memory and resides in a register until it is overwritten. We

illustrate such a defense in Listing VI.4. We note this defense would only be effective if used

in addition to NDA. Without NDA, a control-steering attack could simply steer the execution

to bypass Line 1 and speculatively execute Lines 2-3 to leak the register’s contents.
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6.9 Conclusion

Speculative execution attacks are challenging to mitigate. Blocking individual covert

channels or specific exploitation techniques is insufficient. To design effective mitigations, I

introduced a new classification of speculative execution attacks based on how each attack

induces wrong-path execution. My new technique for controlling speculative data propaga-

tion, NDA, defeats all known speculative execution attacks and drastically reduces the attack

surface for future variants. On SPEC 2017, I show that the four NDA design points offer

effective and performant mitigations.
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CHAPTER VII

Conclusion

In this thesis I analyzed the impact of TEE technologies on the security of services

deployed in the cloud, identified key challenges and suggested various approaches for

enabling usable and performant trusted execution.

In chapter II, I characterized the performance bottlenecks imposed by Intel SGX on

common applications. While the overhead numbers are specific to SGX the bottlenecks

identified are not. Encrypted memory and secure context switching are fundamental to TEEs

including AMD SEV and ARM TrustZone. The optimization strategy I implemented and

tested on SGX is also conceptually viable for the other two TEEs as well.

In the chapters III-IV I tackled the challenge of managing clients’ permissions across a

distributed TEE-based service and how cloud providers can support hardware-based integrity

verification independently of the hardware vendor. Managing trustworthy distribute sate is

paramount to trusting services running on third party machines. Decoupling cloud providers

from the hardware vendor is crucial to making TEE technologies practical on a large scale

deployment.

As I demonstrated in the chapter V, even perfectly secure code running in TEEs is

vulnerable to speculative execution attacks. Unsurprisingly, even a single vulnerability—

such as Foreshadow—can derail all security guarantees of trusted execution including

confidentiality, long-term storage, and integrity. Further research is required to evaluated the
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resilience of SEV and TrustZone to such micro-architectural attacks.

Looking forward, in chapter VI I proposed a fundamental way to redesign out-of-order

processors to defeat speculative execution micro-architectural attacks. Further research is

required to refine the NDA approach in order to reduce its performance overhead. Hard-

ware vendors should consider implementing NDA-like mechanism in their processors as a

proactive approach against speculative execution attacks.

Together, the five concepts described in this thesis would hopefully strengthen the founda-

tions of trustworthy computing, enabling better and cheaper services without compromising

security and privacy of users data.
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